
Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Live objects all the way down: removing barriers between
applications and virtual machines

Tesis presentada para optar por el título de Doctor de la Universidad de

Buenos Aires en el área de Ciencias de la Computación

Javier Esteban Pimás

Director de tesis: Diego Garbervetsky

Consejero de estudios: Rodrigo Castro

Lugar de trabajo: Departamento de Computación, FCEyN, UBA

Buenos Aires, 2024

Live objects all the way down: removing barriers between
applications and virtual machines

Abstract Object-oriented languages often use virtual machines (VMs) that

provide mechanisms such as just-in-time (JIT) compilation and garbage collec-

tion (GC). These VM components are typically implemented in a separate layer,

isolating them from the application. While this approach brings the software

engineering benefits of clear separation and decoupling, it introduces barriers for

both understanding VM behavior and evolving the VM implementation because

it weakens the causal connections between applications and VM. For example,

the GC and JIT compiler are typically fixed at VM build time, limiting arbitrary

adaptation at run time. Furthermore, because of this separation, the implemen-

tation of the VM cannot typically be inspected and debugged in the same way as

application code, enshrining a distinction in easy-to-work-with application and

hard-to-work-with VM code.

These characteristics pose a barrier for application developers to understand the

engine on top of which their own code runs, and fosters a knowledge gap that

prevents application developers to change the VM.

We propose Live Metacircular Runtimes (LMRs) to overcome this problem.

LMRs are language runtime systems that seamlessly integrate the VM into the

application in live programming environments. Unlike classic metacircular ap-

proaches, we propose to completely remove the separation between application

and VM. By systematically applying object-oriented design to VM components,

we can build live runtime systems that are small and flexible enough, where VM

engineers can benefit of live programming features such as short feedback loops,

and application developers with fewer VM expertise can benefit of the stronger

causal connections between their programs and the VM implementation.

To evaluate our proposal, we implemented Bee/LMR, a live VM for a Smalltalk-

derivative environment in 22,057 lines of code. We analyze case studies on tuning

the garbage collector, avoiding recompilations by the just-in-time compiler, and

adding support to optimize code with vector instructions to demonstrate the trade-

offs of extending exploratory programming to VM development in the context

of an industrial application used in production. Based on the case studies, we

illustrate how our approach facilitates the daily development work of a small team

of application developers.

Our approach enables VM developers to gain access to live programming tools

traditionally reserved for application developers, while application developers can

interact with the VM and modify it using the high-level tools they use every day.

Both application and VMdevelopers can seamlessly inspect, debug, understand, and

modify the different parts of the VM with shorter feedback loops and higher-level

tools.

Keywords virtual machines, compilers, garbage collection, metaprogramming,

live programming, object-oriented programming

3

Contents

1 Introduction 59

1.1 Problem Statement511

1.2 Thesis Statement512

1.3 Contribution512

1.3.1 Published Work513

1.4 Thesis Outline513

2 Background515

2.1 Dynamic Languages515

2.2 Live Programming Environments515

2.3 Virtual Machines516

2.3.1 The Architecture of Virtual Machines517

2.4 Bee Smalltalk519

2.4.1 Memory management519

2.4.2 Other Characteristics520

3 Motivation and Case Studies521

3.1 Case Studies521

3.1.1 Garbage Collection Tuning (GCT)522

3.1.2 Recurring Recompilations by the JIT Compiler (JITC)523

3.1.3 SIMD Optimizations (CompO)525

3.2 Problems with State-of-the-Art VMs526

3.2.1 Limited VM Observability (PG1)526

3.2.2 Separate VM Development Mode (PG2)526

5

3.2.3 Longer edit-compile-run feedback loops for VM Compo-

nents (PG3)527

3.3 Summary627

4 Live Metacircular Runtimes629

4.1 Bee Smalltalk630

4.1.1 Execution Model630

4.1.2 Virtual CPU Architecture631

4.1.3 Native Code in Compiled Methods631

4.1.4 Interactions Between VM and Applications632

4.2 Migration from Split Layers Design to Bee/LMR Modules632

4.2.1 Philosophy633

4.3 Customizable Nativizers633

4.3.1 Customizable Send Translation and Semantics634

4.3.2 Invoke Message Linker636

4.3.3 Template-JIT Method Nativizer638

4.3.4 Optimizing Method Nativizer640

4.3.5 Avoiding Recursive Nativizer Invocation642

4.4 Implementation of LMR Built-in Functions643

4.4.1 Message Lookup644

4.4.2 Lookup Caching644

4.5 Wrapping up the LMR into Bee649

4.5.1 Bootstrapping649

4.5.2 LMR Development Environment650

4.6 Related Work651

4.6.1 Self-hosted Virtual Machines651

4.6.2 Designs with Extensible Metaobject Protocols652

4.6.3 Beyond Object-Oriented Virtual Machines652

4.6.4 Designs with Reduced VM and Application Boundaries654

5 Garbage Collection and Memory Management655

5.1 Implementation Challenges655

5.1.1 Garbage Collection of Runtime Objects655

5.1.2 ExecutionContext UnavailabilityDuringGarbage Collection656

6

5.1.3 Garbage Collection Debugging658

5.2 Design Directions759

5.2.1 Two Possible Approaches759

5.3 Overall Design of Bee/LMR Garbage Collectors760

5.3.1 Object Heap Layout761

5.3.2 Object Allocation761

5.4 Generational Garbage Collector762

5.5 Old-Space Garbage Collector763

5.5.1 Compaction Mechanisms764

5.6 Related Work765

6 Metaphysics Framework767

6.1 Context768

6.2 Uses768

6.2.1 Remote Object Discovery769

6.2.2 Remote Code Execution in the Original Process770

6.2.3 Simulated Local Evaluation of Remote Code771

6.3 Design of the Metaphysics Framework771

6.3.1 Base Metaphysics Concepts771

6.3.2 Mirrors772

6.3.3 Subjects, Gates and Execution Semantics773

6.4 Related Work775

7 Qualitative Evaluation777

7.1 How LMRs Improve Upon the State-of-the-Art VMs777

7.1.1 Limited VM Observability (PG1)777

7.1.2 Separate VM Development Mode (PG2)778

7.1.3 Long edit-compile-run feedback loops for VMComponents

(PG3)779

7.2 LMR-based Solution Approaches for the Case Studies780

7.2.1 Garbage-Collection Tuning (GCT)780

7.2.2 Recurring Recompilations by the JIT Compiler (JITC)781

7.2.3 SIMD Optimizations (CompO)783

7

7.3 Discussion784

7.3.1 Additional Benefits784

7.3.2 Importance of Liveness in LMRs887

7.3.3 Drawbacks and Concerns Associated with LMRs887

7.3.4 Metamodel Dynamicity and System Scalability889

7.3.5 Real-life Usage890

7.4 Additional case studies890

7.4.1 Memory Leaks Detection890

7.4.2 Implementation of Code Coverage of Tests893

7.4.3 Other Optimizations893

8 Quantitative Evaluation895

8.1 Performance Evaluation895

8.2 Runtime Implementation Size897

9 Conclusions and Future Work899

9.1 Future Work8100

8

Chapter 1

Introduction

Over the last decades, more and more types of applications moved from lower-

level languages to higher-level ones. Language implementations enabled Live

Programming Environments (LPEs), allowing us to modify programs as they run.

This feedback-driven exploratory programming style [RRL+18] lets application

developers experiment with domain problems in short feedback loops with an

immediate response to their actions.

Unfortunately, this exploratory programming style is restricted to application

code, leaving the underlying language implementation unreachable and virtually

immutable for application developers. This is because LPEs are implemented using

virtual machines (VMs).

This intentional architectural separation deals with portability and limits inter-

dependencies. The interfaces VMs provide are designed to hide implementation

details and limit the ways an application can interact with a VM and customize it to

its needs, in effect making it invisible to the application programmer. The VM only

provides an opaque interface through which the guest language can communicate

in a well-defined but strictly limited way.

However, this strict separation is a double-edged sword. While it provides

benefits, it intentionally keeps application developers unaware of design and imple-

mentation details, which prevents them from fully understanding performance

pitfalls and restrictions of the system. This can lead to inefficient application

code, perhaps causing excesive garbage collections, or inadvertently triggering

9

unnecessary recompilations.

The strict separation also prevents developers from improving the VM and

harnessing it in their application, e.g. by leveraging the just-in-time compiler or

the graph tracing facilities of the garbage collector.

As a result, the architecture of state-of-the-art VMs makes it hard for application

developers to develop the most efficient code possible.

While numerous projects exploredmodernways of implementingVMs [AAB+00,

WHVDV+13, BSD+08, WWW+13a, RP06, CBLFD11, IKM+97], none designed

the VMs in a way so that the code of the VM itself can be changed while it is

executing, because VM components such as the just-in-time compiler and garbage

collector are separated from the hosted language. Thus, the exploratory program-

ming possible in LPEs is not available to VM engineers, who have to endure longer

feedback loops.

Of course understanding a VM and its essential complexity is also a hurdle.

However, for application developers much of the overall complexity is merely

accidental and stems from the programming environment in which the VM is

implemented.

The differences between the languages, tools, and basic development processes

available for VM and application development significantly increase the learning

curve.

While some may argue that writing a just-in-time compiler, garbage collector, or

VM built-in functions may require special skills, we argue that giving developers

the same programming environment, tools, and development process that they are

used to in their applications is far more important to enable them to understand,

and even contribute to a language implementation.

At least to a degree, this is similar to the practice of applications to vendor, i.e.,

to integrate, the code of frameworks they rely on into the application codebase.

This is usually done to have more control over critical dependencies, but also to be

able to better understand how one’s application interacts with a framework.

In this thesis, we demonstrate that it is possible to design a VM so that it can

be changed and worked on with the same tools known to application developers

by avoiding the architectural separation. We argue for a classic object-oriented

design that enables live object-oriented programming, enabling us to construct a

10

Live Metacircular Runtime (LMR). Based on the following case studies that are

taken from the development of a large industrial application with 1.1 million lines

of code, we show that application-level problems can be solved using solution

strategies that remain in that level, showing the benefit of less opaque and more

flexible VMs. The case studies are:

GCT - Garbage Collector Tuning for a particular use case.

JITC - Changing a JIT compiler to avoid recompiling methods too frequently.

CompO - Optimizing the application with vector instructions added to the compiler.

Our case studies were conducted with Bee Smalltalk [PBR14, PBAM17], which

we use to implement the Bee Live Metacircular Runtime. Bee/LMR is a self-hosted

VM runtime, written in Smalltalk. It replaced a previous Bee VM, known as

Bee/SVM, a traditional VM design which was written in C++ and assembly.

Bee/LMR allows application developers to modify the virtual machine code at

run time, as they would do with any other application-level code within the

programming environment. It has been deployed to clients and is used daily for

development of a simulation product in the oil and gas industry. While our focus

for Bee/LMR was practicality and stability, section 8.1 shows that the performance

is not too far off a widely used Smalltalk VM and faster than Ruby and Python.

1.1 Problem Statement

Problem Statement. Split-layer VMdesign. Current LPEs are built on top of VMs

that use a two-layer design. This design presents opaque VM application programming

interfaces that reduce the opportunities of understanding and changing both VM code

and application runtime behavior. Furthermore, this design forces long feedback loops

in VM development, pose unnecessary learning leaps to application developers when

debugging VM behavior and make changes to VMs harder to implement and deploy

than changes to applications. It is usually unpractical for application programmers to

change the VM code after deployment and even during development.

11

1.2 Thesis Statement

We state our thesis as follows:

Hypothesis. A unified design, which places the execution environment and the

applications at the same level, and which applies the same standard encapsulation tools

for abstraction and complexity hiding, allows for immediate, incremental and practical

observation and modification of the VM. This creates opportunities for dealing with

application development problems by leveraging virtual machine components.

To demonstrate our thesis we have applied live-programming techniques to

VM-level code, giving form to Live Metacircular Runtimes (LMRs).

1.3 Contribution

The key contributions of this work are:

• The design of a runtime system without the architectural separation of VM

and application, which we call Live Metacircular Runtimes.

• The implementation of a self-hosted Smalltalk with a just-in-time compiler

and garbage collector, where every part of the runtime can be changed at

run time, and a framework that allows to lively debug the system from the

outside when low-level errors occur.

• An evaluation of the trade-offs of removing the architectural distinction

between VM and application using three case studies on a large industrial

application. The key benefits are the gains of immediacy of LPEs and the

explorability and malleability of LMRs.

We conduct our experiments through the implementation of Bee/LMR, a self-

hosted Smalltalk runtime library. Bee/LMR allows modifying the code of its

components at execution time, as any other application-level code within the

programming environment.

Bee is a live OO system with the following characteristics:

i) it is dynamically typed, as defined in the next section,

12

ii) it uses garbage collection,

iii) it facilitates inspecting, debugging and changing code arbitrarily at run time.

Bee/LMR is a runtime implementation for Bee that allows to live-program the

runtime system itself. Similar projects in the past provided support for dynamic

changes of a runtime [USA05, VBG+10] and were an inspiration to this work.

However, none of them were able to create a completely working system. They

did not support all the live programming features of the language being imple-

mented, nevertheless could run as fast as traditional VMs. Specifically, they did

not implement lively programmable garbage collectors, and their performance was

poor.

Until today, runtimes for live programming environments supported only few

or no live changes, even when written using dynamic languages. We address that

situation in this work.

1.3.1 Published Work

This thesis focuses on Live Metacircular Runtimes. Some results presented here

have been originally published in [PBAM17, PM17, PC19, PMG24]. During the

PhD Iworked on other topics, always related to virtual machines but not necessarily

to LMRs. Details of that research, such as [Pim22], [Pim18] and [CPVF18] were

not included to keep the thesis concise and structured.

1.4 Thesis Outline

The rest of this dissertation is structured as described next.

Chapter 2 Details the context under which this research has been carried out, de-

scribing live programming environments, virtual machines and Bee Smalltalk.

Chapter 3 Shows the problems faced by traditional application developers when

using virtual machines designed as a split layer. We show 3 real-life case

studies that exemplify those problems.

13

Chapter 4 Proposes our new design, which we call Live Metacircular Runtimes,

and details its implementation. This includes information about the archi-

tecture of Bee/LMR, its JIT compilers, built-in functions and related work.

Chapter 5 Describes the challenges of implementing garbage collection and mem-

ory managment in LMRs, and shows the design and implementation of

different algorithms using Bee/LMR as a research vehicle.

Chapter 6 Presents the Metaphysics framework, which is used to implement an

out-of-process debugger for Bee/LMR, which was designed with the purpose

of debugging low-level components such as the GC and JIT.

Chapter 7 Includes a qualitative evaluation were we show how LMRs improve

upon state-of-the-art VMs, how they solve the problems stated in the case

studies presented in section 3.2, and address concerns associated with LMRs.

Chapter 8 Evaluates LMRs quantitatively, by doing a performance comparison

with other VMs, and also comparing implementation size.

Chapter 9 Presents conclusions and future work.

14

Chapter 2

Background
Live Programming and The Architecture of Virtual Machines

The focus of this thesis is shortening feedback loops in VM development. In this

chapter we provide a background on the related concepts and, to avoid confusion,

we also define their specific meaning when referenced throughout this text.

2.1 Dynamic Languages

Definition 2.1.1 We say Dynamic Language to refer to languages that are designed

to reduce software complexity by hiding details from programmers in two ways: they

are dynamically typed, and they provide automatic memory management.

Smalltalk, Self, JavaScript, Python, Ruby are typical examples of dynamic

languages.

2.2 Live Programming Environments

Definition 2.2.1 A Live Programming Environment (LPE) is a set of software

tools that allow to continuously develop programs at the same time they are running,

allowing to change their components without restarting them so that the development

feedback loop is immediate.

15

LPEs are designed to allow programmers recompile code with instant feedback

loops, without requiring a separate compilation step before execution. Such envi-

ronments have a long history [RRL+18], with the work on SOAR being perhaps

one of the earliest examples [UBF+84] of Live Programming Environments for

object-oriented languages based on Smalltalk. Self was also designed with that same

philosophy [CUL89] and its Klein [USA05] implementation comes the closest to

what we consider a Live Metacircular Runtime, as we discuss in Chapter 4 below.

It is not enough for a language to be dynamic and to provide reflective facilities

to be a live programming environment. It also needs the tools to dynamically

inspect the program state, debug the program code and lively change it. Smalltalk

is the seminal example of Live Programming Environments for Object-Oriented

languages. Self was also designed with that same philosophy.

Other languages such as Python, JavaScript, and Ruby were not originally

implemented as LPEs, in practice requiring program restarts to evaluate new code.

However, with time they have gained features and tools that shorten feedback

loops and allow for exploratory programming. For example, IPython [PG07] gives

developers a computational notebooks, which is similar to a read-eval-print with

mostly immediate feedback. Since it became popular, it got renamed to Jupyter to

indicate the support of a wide range of languages and is widely used for instance

for data analysis tasks.

2.3 Virtual Machines

Dynamic object-oriented programming languages run of top of Virtual Machines.

Definition 2.3.1 A Process Virtual Machine, or just Virtual Machine, is a piece

of software that takes high-level guest programs as input and executes them on the

underlying hosting hardware.

Virtual Machines are made of different components that are put together to

obtain a working runtime system. These components usually contain parsers,

compilers, memory managers, built-in operations and interfaces for calling in and

out from the guest language to the host and vice versa.

There are multiple techniques for executing the source code of programs in

16

Virtual Machines. Interpreters, JIT- and AOT-compilers trade efficiency for imple-

mentation ease, among others. Usually, the source code of programs is translated

into an Intermediate Representation (IR), which can be more efficiently executed

either through an interpreter or through compilation to native code. To maximize

performance a VM can mix interpretation with JIT and AOT compilation.

Definition 2.3.2 (Interpreter) An interpreter is a program that executes another

target program without translating the target to native code.

Definition 2.3.3 A JIT compiler is a program that transforms another target program

into native code dynamically, while the target is executing

Definition 2.3.4 An AOT compiler is a program that transforms another target

program into native code before the target starts execution.

JIT compilers were made popular by [DS84] in conjunction with other tech-

niques to make Smalltalk systems more efficient. In JIT compilers, the nativization

process can be triggered on demand, usually after the VM has detected a code

section has been executed multiple times. JIT compilers trade compilation time

for execution time, so they are designed in a tiered fashion: when the VM detects a

piece of code is being executed with certain frequency, it invokes a fast JIT com-

piler that performs cheap optimizations; when it detects the piece of code is being

executed even more frequently, it can invoke a JIT compiler that performs even

more optimizations to the code, spending more compilation budget to produce a

smaller overall program execution time.

2.3.1 The Architecture of Virtual Machines

This section gives a brief overview of the architectures provided by virtual machines.

First, we discuss the classic layered architecture where the VM enforces a separation.

Then, we look at variations and approaches that affect this separation. This section

also introduces Bee Smalltalk, the system used for our case studies.

A Layered Architecture: Separating VM and Application Layers

As discussed in chapter 1, traditional virtual machines are designed to clearly

separate the virtual machine from the application, providing a layered architecture.

17

This gives application developers a concrete and fixed target, enabling them

for instance to port an application to compatible VMs as long they only rely on

interfaces and behaviors guaranteed in a specification such as the JVM [LYBB14]

or ECMAScript [Int15].

Features such as garbage collection and just-in-time compilation are automatic

and VM developers will go through great efforts to make them unobservable.

However, a VM may also offer APIs that enable an application to interact with the

VM and configure it for its needs. For instance, many VMs allow an application

to trigger garbage collection. Other common APIs may give access for instance

to run-time statistics such as memory use, time spent on garbage collection or

just-in-time compilation. Often these APIs will be limited to avoid disclosing

implementation details and thus, to minimize the risk that an application will

depend on them.

On the other hand, lower-level VM developers implement and optimize those

features and provide access to them through some ad-hoc API. This creates a clear

boundary between the application and VM, ensuring a clean separation of concerns

and shielding application developers from the implementation details of the VM.

Popular VMs that use this layered architecture include CPython (the main

Python VM), JVM, .NET’s Common Language Runtime, and the ECMAScript-

compatible JavaScript virtual machines, e.g., V8, SpiderMonkey, and JavaScript-

Core. The common implementations of these VMs use a mixture of C/C++

and assembly code. This gives VM developers the control to reach the desired

performance, in exchange for high development effort.

However, this two-layer design also has its problems, since features are provided

intentionally as a black box to the application developer. This hides causal con-

nections and prevents application developers from understanding and relying on

implementation details.

To give an example, in languages such as Smalltalk and Self, it is usually said

that everything is an object. These systems allow the application programmer

to manipulate metaobjects such as methods, method dictionaries and classes or

prototypes. By providing these components as properly abstracted objects, these

systems allow programmers to more easily understand how the system works, and

how to solve problems related to application and metaobjects interaction.

18

On the other hand, things such as the JIT compiler, the garbage collector, and

the built-in runtime functions are not part of the runtime libraries, hence not

objects. Thus, application developers cannot simply inspect the garbage collector

to know under which conditions it triggers, nor observe the JIT compiler to know

when a method is considered for compilation.

While many of these VMs are open source, they are typically not written in the

same language as the application, and are not part of the codebase. This prevents

application developers to use their usual development tools to observe, analyze,

reuse, and change these components. The immediate feedback they get from their

tools with few exceptions ends at the point of entering the VM layer.

2.4 Bee Smalltalk

Bee Smalltalk, our research vehicle, initially ran on top of a traditional VM imple-

mented in C++ and assembly. Throughout this work we say Bee/SVM to refer

to Bee Smalltalk running on top of that statically compiled VM. Bee/LMR was

designed as a drop-in replacement for the traditional VM, and has a JIT compiler,

garbage collector (GC), and numerous built-in functions. The main difference is

that Bee/LMR is implemented in Smalltalk using a unified application/VM layer,

while the traditional VM is split from the application and its C++ code is mostly

invisible to application programmers.

Smalltalk methods are compiled into a bytecode format, and when first executed,

are just-in-time compiled through a template JIT compiler. There is no interpreter

mode.

2.4.1 Memory management

Both Bee/SVM and Bee/LMR have two garbage collectors: a generational copying

collector for the new space heap and a compactor for the old space heap. The

algorithms implemented in Bee/LMR for each of them are different from the ones

implemented in Bee/SVM. While the characteristics of these GCs are explained in

finer detail in chapter 5, we now shortly explain their main design layout.

In Bee/LMRGCs are metacircular and can be modified at run-time. They had to

19

be designed to keep objects valid during the garbage collection process, as described

in [PBAM17]. To ensure objects are valid, they use object copying with external

forward pointers, so that the GC only changes the mark bit of object headers

instead of temporarily overwriting them completely. Bee/LMR compactor for

the old heap is of garbage-first (G1) type [DFHP04]. New space consists of a big

eden, and two smaller from and to spaces. When the eden is out of space, the

generational scavenger is run. It moves most surviving objects in eden and from to

to, and then flips from and to. Tenured objects are moved to the old zone, where

they remain until the G1 collector is run. This is triggered by a heuristic that

considers the heap growth since the previous G1 collection.

The old zone is divided in equally sized spaces, and there is a large object zone

for objects that exceed a size threshold. Tenured objects are bump-allocated in the

old spaces. As computation evolves some old objects become unreachable. The G1

collector keeps track of the reachable usage of each old space, where a low usage

implies higher fragmentation. Before starting tracing, the GC selects spaces to be

evacuated, choosing the ones that have the lowest usage ratios. Evacuation makes

objects allocated in fragmented spaces become compacted into to other free spaces.

2.4.2 Other Characteristics

The Smalltalk system itself comes with the typical features of an image-based

development environment. It uses as classic class browser with object inspectors

and workspaces for arbitrary code evaluation. As for most Smalltalk systems, the

debugger enables developers to inspect, explore, and modify the system at run

time by changing state and code at will.

Bee is the platform for a simulation application in the oil and gas industry

developed by a small team. Over time, the team realized that the strict separation

between VM and application caused a too high cost, because the VM had to be

maintained as a separate codebase. For example, investigating crashes no matter

whether they were caused by the application or a VM bug took too much effort.

As a small team with a production application of 1.1 million lines of code relying

on Bee, it was decided that major steps had to be taken to make maintaining Bee

easier for all team members. We describe the result in chapter 4.

20

Chapter 3

Motivation and Case Studies

To motivate our exploration of a runtime design that removes the barriers between

application and VM, we exemplify the trade-offs based on three case studies from

the development of our application on top of Bee.

We guide this work by considering three case studies taken from real-life devel-

opment scenarios of an LPE-based product. Each case study describes a scenario

and the solution steps needed in a state-of-the-art VM.

For each case study, we identify the specific obstacles with these VMs and the

features needed to enable application developers to benefit from their normal

tools and short feedback loops. We examine how these VMs make it hard to

deal with the presented cases. Finally, we distinguish three features are needed to

create exploratory programming environments with short feedback loops, where

developers can more easily understand and improve VMs. In Chapter 4, we propose

the usage of Live Metacircular Runtimes as a kind of VM that include those three

features.

3.1 Case Studies

For this thesis, we selected a case study on the performance impact of garbage

collection, one on avoding recompilations by the just-in-time compiler, as well as

one on adding support for vector processor instructions for better performance.

These cases were gathered from real word experiences with an LPE based product

21

that used a traditional VM. All of them expose a shared category of problems

when working with state-of-the-art VMs: they are hard to debug within LPEs, they

require harnessing the VM in unanticipated ways, they pose a leap to application

developers to configure the system in order to work with the VM, it is not practical

to resolve them using live programming.

3.1.1 Case Study 1: Garbage Collection Tuning (GCT)

The allocation behavior of an application may trigger undesirable behavior by a

garbage collector. GC bottlenecks are not uncommon in applications that allocate

objects freely, with memory being reclaimed automatically with minimal inter-

vention from the application code. However, memory managers are not infallible.

For instance, too many allocations in a too small heap may cause too frequent

collections, resulting in performance issues.

Certain allocation patterns and heap structures may also cause long GC pauses.

In some cases though more frequent collections can faster remove large numbers

of temporary objects, which may make a smaller heap size have an overall better

performance.

When diagnosing such issues in an application, a developer dealing with this case

will first needs to identify when GC occurs, and to collect statistics on heap size,

object survival rates, and heap fragmentation. For long-running applications, they

may also need to filter these statistics to specific parts, isolating the computation

of interest.

A state-of-the-art VMmay have a range of different collectors. For simplicity, we

will only discuss a single-threaded scenario. Here a VM could have a generational

GC that triggers when there is no space in the nursery to allocate new objects.

VMs have various heuristics to trigger a minor or a full collection. An application

may be able to use an API of the VM that brings access to basic GC statistics, or

that allows to manually trigger a GC.

However, changing the GC or fine-tuning its parameters, often requires to start

the VM with different parameters. Full GC details may only be available via

console logs enabled by command-line parameters or monitoring APIs that can be

accessed via external tools to observe GC and allocation details, as it is the case

22

for JVMs. Thus, in most cases, an application developer has to drop out of the

application development environment and possibly learn a different tool.

All of today’s solutions have in common that they maintain the strict separation

between application and VM and rely on external mechanisms and tools to provide

the desired insights.

For the specific performance problem at hand, after collecting the data, and

analyzing it with new tools to be learned, or using custom code, we may find that

one solution is to set a specific heap size while the relevant code is executing, which

better balances the cost of GC and GC frequency. Though, adjusting the heap

size mid-execution is not something generally supported by most VMs. However,

modifying the VM is in the case of JVMs, JavaScript VMs, and many others is

implausible for application developers. Not only will it require them to learn how

to build these systems, but also to navigate possibly hundreds of thousands of lines

of code.

In summary, for application developers, the available GC systems provide opaque

interfaces that make it difficult to determine what happens behind the scenes and to

gather GC statistics. Modifying a single line of code of the GC requires a significant

initial cost of setup and building, and is a challenging task due to the switch to

an external, opaque VM codebase, especially when written in a non-live language.

Feedback loops are long, and details on how time is spent on memory-management

routines are scarce. It is impractical to analyze GC triggering events, and the code

of the GC can not be easily inspected or changed in the same way an application

would be developed.

3.1.2 Case Study 2: Recurring Recompilations by the JIT

Compiler (JITC)

The problem of generating the optimal target code from a source program is

undecidable in general [ASU20]. Runtime engines implement heuristics that try to

perform best in most frequent scenarios. When falling into unusual cases, they just

try to make sure that performance degrades as gracefully as possible. Monomorphic

and Polymorphic Inline Caches [DS84, HCU91], on-stack replacement [HU96,

FQ03], are just some techniques that allow to deal with compiler adaptation to

23

improve performance dynamically. However, no single approach can cover all

cases. Furthermore, some of these techniques are complex to implement and may

not be available in the system.

Since run-time compilation comes at a cost, VMs also need to determine when

JIT compilation is worthwhile. However, as with all heuristics, unusual cases may

result in undesirable performance.

In the case study, a product update got deployed to a customer, which reports

that the new version is much slower than the previous one. The underlying

problem is that in the new version, the application code dynamically adds and

removesmethods to an object, which invalidates JIT-compiled code causing frequent

recompilations.

On a state-of-the-art VM, to detect the cause of the performance issues the

developer would start to profile the application. However, since JIT compilation is

transparent, a profiler normally does not show compilation time. It is also unlikely

that an application developer would think to look for compilation statistics, or

perhaps notice that the compiler thread may be indicated as busy for longer than

usual.

Indeed, our application developers were not able to find the issue using the

profiler. However, they constructed a mechanism that allowed them to use a

binary search through the changes in the update to identify the cause, which led

them to the code change that added the dynamic method updates. Thus, because

of the strict separation between VM and application, the standard tools failed

our developers, and they had to rely on other tools using a different suitable

development approach to find the root cause.

After identifying the that cause, our developers need a good understanding of

the JIT compiler to devise a fix and avoid the recompilations. Even though the

problem can be solved with a simple native-code caching heuristic, changing the

JIT compiler code at fault is likely again too complex to the application developers.

Thus, they will need to rewrite the application code to avoid adding and removing

methods dynamically.

24

3.1.3 Case Study 3: SIMD Optimizations (CompO)

Applications such as ours, with a lot of floating-point arithmetics, can gain per-

formance by using vectorized operations in modern x86 and ARM processors.

However, many high-level languages do not provide compiler optimizations or

APIs to use them.1

To optimize the methods that do the computation, our application developers

need to either directly or indirectly use the vectorized floating-point operations

(SIMD: single instruction, multiple data).

With state-of-the-art VMs, one could wait for or ask the VM vendor to add

support for the vectorized operations. One possibility is to just wait for VM

makers to implement the vectorized operations themselves. However, this may be

impractical. For instance for Java, it is likely still going to take another few years

before support is finalized. To give another example, while MMX instructions

were added to Intel processors in 1997, it was only after 2014 that some JavaScript

VMs started adding SIMD extensions, 17 years later!

An alternative is to use an extension to the VM, that relies on low-level code,

which makes the operations accessible. JVMs provide the Java Native Interface

and other VMs have typically similar mechanisms. Another approach, exocom-

pilation, [IBR+22] allows abstracting data processing algorithms from scheduling.

This simplifies generating efficient machine code that targets varying hardware

instructions and architectures.

However, these approaches require the application developer to switch the

language and tools, which comes with extra effort and likely a longer-than-usual

bug tail. In the worst case, there may not even be compiler intrinsics and our

developer may need to use inline assembly. Depending on how the native interface

works, it may also come with extra inefficiencies when switching between normal

and extension code, perhaps because it needs to marshal high-level arguments into

low-level arguments before computation, and possibly also to save VM state before

calling native code.

1Even Java only has experimental support: https://openjdk.org/jeps/438.

25

https://openjdk.org/jeps/438

3.2 Problems with State-of-the-Art VMs

The common theme in our case studies is that the strict separation between appli-

cation and virtual machine for all its engineering benefits comes also at a cost.

In each case study presented, the series of actions required for dealing with the

problem in state-of-the-art VMs is augmented with another series of non-trivial

actions, that increase the accidental complexity of the system.

3.2.1 Limited VM Observability (PG1)

Since VMs are designed to abstract and hide implementation details, directly

available APIs are typically minimal. Even tooling interfaces as available for

instance for JVMs may be limited by the desire to minimize run-time overhead

when collecting data.

In our case studies, this meant that collecting the desired information about

garbage collection either required to learn about external tooling or process log

output. To understand the behavior of the just-in-time compiler, JVMs do provide

the data as part of the tooling interfaces and the Java Management Extensions.2

However, since it is transparent to the developer, not visible in profiles, and less

commonly known as source for performance issue than GC, it is unlikely an

application developer will consider it as a source of the issue.

3.2.2 Separate VM Development Mode (PG2)

Since as the author of this work, the readers may be VM developers, their first

instinct can be yes, let us fix the VM. However, in the common case, working on the

VM is too different from working on the application to easily transfer language

and tooling knowledge. In most cases, the VM is implemented in a more low-level

language, has complex build steps that need to be understood, and requires the

use of different development tools. As such, making a change to a VM requires

a lot of additional learning before one can even start to explore the typical VM

codebases of hundreds of thousands of lines of code. Thus, the standard solution

2https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/

lang/management/CompilationMXBean.html

26

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/CompilationMXBean.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/CompilationMXBean.html

for an application developer will be to find workarounds in the application code

using the tools they already know.

3.2.3 Longer edit-compile-run feedback loops for VM

Components (PG3)

In cases like our case study were we want to use vectorized operations in our

simulation code, dropping to the level of VM development is the only option.

While building extensions is often supported by documentation and tooling that

requires less learning than changing the VM itself, it is still a change of programming

language and tooling and comes with the burden of longer edit-compiler-run

feedback cycles than what application developers are used to from their high-level

languages.

With all this required learning, one can ideally change things, explore conse-

quences, and have immediate feedback as application developers may be used to

from their live programming environments. However, because extensions require

lower-level languages, changes may require restarting the VM and application

before taking effect, which is a drastic change in development flow. This lack

of instant feedback increases the time from ideas to experiments and the cost of

building such extensions.

3.3 Summary

We showed that the use of a strict two-layer architecture separating VM and ap-

plication code for Live Programming Environments does not invite developers to

deal with the three case studies.

On the contrary, such design poses knowledge and practicality barriers that are

artificial, unrelated to the problems being dealt with in each case. The barriers that

this architecture imposes prevent developers to detect and solve the problems that

appear in their actual work.

The division between application and VM cuts the causal connection that asso-

ciates the problems with the solution, increasing the time needed to find the way

along codebases that can have hundreds of thousands of lines. These extra tasks to

27

be carried out can be considered too difficult for application programmers.

While the architecture ensures benefits such as for instance portability, it also

limits the observability of VMs (PG1), typically leads to a separate development

mode for the VM (PG2), and causes a longer edit-compile-run feedback loop for

VM components than for application code (PG3).

28

Chapter 4

Live Metacircular Runtimes

To overcome the limitations presented in the Section 3.2, we propose the imple-

mentation of Live Metacircular Runtimes. We argue that LMRs create a synergy

with live programming environments that makes it practical to modify at run time

VM components that have traditionally been considered static.

In this chapter, we describe our research vehicle, Bee/LMR, which is an imple-

mentation of an LMR on top of Bee Smalltalk, a live programming environment

that was originally designed to run using a VM written in C++. 1

An LMR basically consists of a set of modules written in the same language as

the applications, that replace what is usually shipped as a separate hidden layer, the

VM. These modules can implement interpreters, just-in-time and ahead-of-time

compilers, garbage collectors and built-in operations, everything that is needed

to allow the system to execute code. The LMR modules sit at the kernel of the

live programming environment. The fig. 4.1 shows the design transformation

necessary to convert Bee/SVM into Bee/LMR.

Before delving into the implementation details of the LMR module, we describe

the key aspects of Bee Smalltalk to help contextualize the whole picture of the

system.

1While this thesis describes work done in Bee/LMR, which is not freely available, we are also

developing an implementation of an LMR on top of a fully open-source Smalltalk dialect known

as Egg. The LMR implementation on top of Egg is freely available.

29

Figure 4.1: Transformation from Bee/SVM (left) to Bee/LMR (right). While

Bee/SVM originally used a traditional VM, implemented in C++ and

assembly in a separate layer and statically compiled, Bee/LMR is

implemented as a series of common libraries written in Smalltalk,

among which are the JIT, the GC, and a kernel with built-in functions

such as method lookup.

4.1 Bee Smalltalk

Bee is a Smalltalk dialect loosely following the Smalltalk-80 specification [GR83]

and Squeak Smalltalk [IKM+97] core classes. Its original VM, now retired, was

implemented in C++ and assembly, and Bee had a two-layer VM/application

design. This VM, which is statically compiled and cannot be easily modified at

execution time is called Bee/SVM throughout this work.

To contextualize the changes required for the migration from Bee/SVM to

Bee/LMR we start by giving an overview of the architecture of Bee and its VMs.

4.1.1 Execution Model

In Bee, Smalltalk code is precompiled from sources to compiled method objects

that hold bytecoded instructions. The bytecodes use a virtual CPU architecture, so

they cannot be executed directly. Bee does not implement an interpreter. Instead,

just-in-time and ahead-of-time compilers translate method bytecodes to native

assembly code when it is required. We generally call these compilers nativizers,

and this last translation nativization.

30

Name Contents Saved by

R message receiver and return value scratch

S self inside a method callee

M execution context of current method or block callee

E environment variables of current method or block callee

A 1st scratch argument scratch

T scratch temporary or 2nd scratch argument scratch

G globals array fixed

nil nil object fixed

true true object fixed

false false object fixed

SP stack pointer callee

FP frame pointer callee

PC program counter –

Table 4.1: Register names of the virtual Bee CPU

4.1.2 Virtual CPU Architecture

In Bee, both bytecodes and nativizers are designed around a virtual CPU architec-

ture. This architecture consists of a stack and special purpose registers described

in table 4.1. Different assembler backends map the abstract registers to concrete

ones. For example, the AMD64 backend assigns RAX register to R, RSI to S and so

forth. This design allows higher-level code generators to work with a single virtual

architecture, so that changing the target ISA becomes mostly a matter of changing

the assembler backend.

4.1.3 Native Code in Compiled Methods

When a method is nativized, it is assigned a NativeCode object that serves as an

execution context for the method. This object contains a pointer to a byte array

with the machine code that resulted from the translation of the bytecodes, and

a list of literals that are referenced from that machine code. The machine code

itself does not contain any pointer to Smalltalk objects, which facilitates garbage

31

collection as will be explained in chapter 5. Access to the literals of the method

from machine code is done indirectly through M register, which gets initialized on

entry to the method. There is no distinction between the byte arrays of machine

code and other kinds of byte arrays, they are all objects stored in the same heap.2

4.1.4 Interactions Between VM and Applications

Originally, Bee ran on top of a statically compiled VM, which included the JIT-

compiler, the built-in primitives and the garbage collectors. The VM was statically

compiled and contained the basic functionality to allow running application code.

The VM would load a Smalltalk image and start executing Smalltalk code by

locating a launch method, JIT-compiling it and then jumping into its native code.

The Smalltalk code would then run, occasionally calling back the VM in two ways:

explicitly or implicitly. Explicitly through the execution of primitive compiled

methods. Implicitly when causing invocation of a method that had no native code

(triggering the JIT-compiler).

4.2 Migration from Split Layers Design to Bee/LMR

Modules

The LMR modules work as a drop-in replacement of the original VM function-

ality. In the LMR implementation there is just no distinction between VM and

application layers. The LMR code gets plugged into the system in the places where

the interactions between both layers used to happen, but within Bee/LMR no

specialized mechanism is needed to trigger VM code in a separate layer, as that

layer does not exist. Objects and messages are all that is needed.

The migration from a traditional split layer design required three main com-

ponents: a bytecode to native-code translator (which we call the nativizer), the

built-in functions and the garbage collector. The built-in functions and the garbage

collector require efficient access to parts of the VM which are usually not directly

accessible from the language semantics (i.e. object headers and raw memory access).

2Which means all the heap is marked as executable memory, a design decision we might change in

the future for the sake of improved security.

32

This is made possible in Bee/LMR by adding features to the nativizer, so we explain

it first.

4.2.1 Philosophy

The main idea driving the implementation of Bee/LMR is that nothing that can be

implemented at the high level should stay implemented at the low level. Concepts

that are typically realized as low-level parts of a system, e.g., built-ins, compilers

and debuggers, should be realized in the high level language as the rest of the system

is. Some researchers advocate for high-level low-level programming, arguing that

productivity is improved while performance impacts can be overcome and reduced

tonegligible levels [FBC+09].

4.3 Customizable Nativizers

The first component that required replacement to implement Bee/LMRwas the JIT

compiler. While Bee/SVM’s one was written in C++, in Bee/LMR the nativizer is

written in Smalltalk. Current Bee/LMR design includes two nativizers mostly for

performance reasons. A first-stage template JIT compiler iterates method bytecodes

translating them to native code very quickly but doing only small optimizations.

A second-stage optimizing compiler is able to perform more optimizations at the

cost of lower nativization throughput.

For the purpose of allowing efficient access to parts of the VM usually hidden,

compared to what the original Bee/SVM JIT did, only one modification was

needed: the Bee/LMR nativizer allows customizing the translation of message send

bytecodes, to perform custom actions with a set of specific message names, which

are distinguished by having a starting underscore (_) character.

The mapping of special message names to special translations is determined

by the configuration of a NativizationEnvironment object, which also knows the

target architecture and other important details as explained next. The nativization

environment is the entry point to translation of bytecodes into native code. This

object references the components of the system that need to be known in order to

produce native code: the target system CPU architecture, the special message send

33

Listing 4.1: Selection of MessageLinker by the NativizationEnvironment.

NativizationEnvironment >> emitSend: selector using: anAssembler

| linker |

linker := self dispatchLinkerFor: selector.

linker emitSend: selector using: anAssembler

NativizationEnvironment >> dispatchLinkerFor: selector

^candidates

detect: [:linker | linker canInline: selector]

ifNone: [self error: 'cannot dispatch ', selector storeString]

configuration, write barriers, safe-point routines, globals, system ABI, etc.

4.3.1 Customizable Send Translation and Semantics

In traditional Smalltalk systems, message lookup is provided as an invisible runtime

component. Usually, message sends are encoded with a send bytecode, and the

VM is in charge of implementing an execution mechanism that performs the sends

according to Smalltalk semantics. The VM will look for a method that implements

the selector being sent in the class hierarchy of the receiverand, when found, will

invoke the corresponding method.

While there exist mechanisms to workaround the dispatch behavior in traditional

Smalltalks3, those are high-level and do not allow to really modify the internal

message dispatch mechanism provided by the VM. To be able to perform system-

level operations using Smalltalk, such as accessing object headers and doing pointer

arithmetic, it was necessary to implement, in high level, lower-level dispatch

mechanisms.

Bee/LMR design allows to switch the dispatch mechanism arbitrarily at runtime

on a message send basis. The base of the flexibility is the use of a series of dispatch

linker hierarchy of objects, known as MessageLinkers, which work in collaboration

with the NativizationEnvironment.

Currently, dispatch mechanism is determined by the sent selector: generation of

native code for a message send is delegated to a composite message linker, which
3i.e. with doesNotUnderstand: or perform: mechanisms.

34

chooses a particular type of linking according to the selector being dispatched

as shown in Listing 4.1. When the NativizationEnvironment object is sent emit-

Send:using: to nativize a send, it looks through its configured linkers to determine

which one to use to generate code for the selector being passed as argument. Fi-

nally, it delegates to the subtype the generation of native code for that particular

message-send. Different subtypes of message linkers implement different message

send semantics.

When a method is nativized, for each message send that is not inlined, a SendSite

object is attached to the native code of the method. The send site encodes all

the information needed to execute the message send when it’s time, to cache

type information for inline caches and also to discard the cached information if

application code gets updated.

Inline Message Linker and Underprimitives

This linker allows generating inline assembly code at a send-site instead of the

native code required for normal message send semantics. Messages linked like this

are known as underprimitives. Listing 4.2 shows the implementation of _isSmall-

Integer underprimitve. The method assembleTestSmallInteger interacts with an

assembler object that will generate the required machine code.

Underprimitives are implemented in the lines of the ABI presented in table 4.1.

In the case of _isSmallInteger, the assumption is that the receiver of the message

will be in R register, and the result will be returned in that same register. This

assumption is guaranteed by the JIT compiler and has to be maintained by the

methods that implement underprimitives.

From the Smalltalk parser’s point of view, the underscore at the beginning of a

message name has no special semantics. It just is the nomenclature used to warn

the programmer that a message has some special meaning such as being low-level or

an underprimitive. Neither it has a special semantics when compiling to bytecodes.

The only change in semantics occurs in the execution of the message, through the

nativization mechanism.

The selectors implemented as underprimitives are defined dynamically through

metaprogramming. Methods implemented in the class InlineMessageLinker that

belong to the underprimitive category are automatically added to the list of un-

35

Listing 4.2: Example of _isSmallInteger underprimitive implementation and

usage.

InlineMessageLinker >> assembleTestSmallInteger

| integer |

#_isSmallInteger.

integer := assembler newLabel.

assembler

testRintegerBit;

loadRwithTrue;

shortJumpIfNotZeroTo: integer;

loadRwithFalse;

@ integer

ProtoObject >> behavior

^self _isSmallInteger

ifTrue: [SmallInteger instanceBehavior]

ifFalse: [self _basicULongAt: 0]

derprimitive selectors of the message-send linker. In the exaple of Listing 4.2,

#_isSmallInteger is automatically configured as an underprimitive, and the JIT

will emit the code generated by assembleTestSmallInteger for any #_isSmallInte-

ger messages it sees.

In Bee/LMR, underprimitives are the base tool used to efficiently access object

headers. Listing 4.3 shows the implementation of a _size method. When receiv-

ing this message, the receiver returns the size stored in the object header. Both

_smallSize and _largeSize are implemented as underprimitives. On the other

hand, _size and _isSmall are Smalltalk methods which will be statically linked, as

described next.

4.3.2 Invoke Message Linker

In some particular situations it becomes useful to implement a message send as if it

were a static function call. Instead of issuing a full method lookup for the type of

the receiver of the sent message, this linker emits a statically linked invoke call for

a preset method that corresponds to the message selector.

36

Listing 4.3: Usage of underprimitives that access the headers of objects and their

implementation.

ProtoObject >> _size

^self _isSmall

ifTrue: [self _smallSize]

ifFalse: [self _largeSize]

ProtoObject >> _isSmall

^(self _basicFlags bitAnd: IsSmall) = IsSmall

InlineMessageLinker >> assembleBasicFlags

#_basicFlags.

self emitByteAtOffset: _Flags

InlineMessageLinker >> assembleSmallSize

#_smallSize.

self emitByteAtOffset: _SmallSize

InlineMessageLinker >> assembleExtendedSize

#_largeSize.

assembler

loadZeroExtendLongRwithRindex: _ExtendedSize;

convertRtoSmallInteger

37

Invoked messages can be used as an optimization, to save the cost of executing

lookup. This is specially useful with low-level methods implemented in the root

of the class hierarchy, at ProtoObject class. Methods implemented in ProtoObject

are prone to send messages also implemented in ProtoObject. But as the concrete

receivers of those messages can be of any type, these message sends tend to become

megamorphic. Invoked messages are statically linked at JIT time, and do not

involve class checks, making this kind of code run faster.

Consider the method ProtoObject»_size presented in Listing 4.3, which sends

the _isSmall message, that is also implemented in ProtoObject. Suppose the

message _size is sent to an object of type Array. During execution, the _isSmall

message will be sent to the same receiver, of type Array, and an inline cached would

be created mapping ProtoObject»_isSmall to class Array. If _size were now sent

to an object of other type, the inline cache would fail, and a polymorphic cache

would be created, to add this second type, but mapping the same implementation.

Thus, for each specific type of _size receiver, the inline-cache of _isSmall would

add an entry, degenerating into a megamorphic cache and consequently degrading

performance.

4.3.3 Template-JIT Method Nativizer

The default method nativizer decodes method bytecodes iterating them one-

by-one until it has generated native code for the whole method. This nativizer

avoids doing optimizations such as code transformation or register allocation.

Instead, it relies on optimizations done to the bytecodes by previous precompilation

stages, which may for example reorder bytecodes to save stack and register-copying

operations.

Listing 4.4 shows the nativization algorithm. It starts in translateMethod,

which generates native code for the method and its blocks. This translation process

involves iterating the bytecode stream, translating each bytecode at once, with a

specialized bytecode nativizer for each bytecode type. An example of different

bytecode nativizers is shown in Listing 4.5.

The case of send bytecodes is the only one that requires special care compared

to Bee/SVM, because of the added send semantics in Bee/LMR. As shown in

38

Listing 4.4: Implementation of the template bytecode-to-assembly method

translator

TemplateBytecodeNativizer >> translateMethod

self

emitMethodPrologue;

translateFrom: currentPC to: self bytecodeSize;

emitEpilogue.

blocks do: [:blockInfo | self translateBlock: blockInfo]

TemplateBytecodeNativizer >> translateFrom: start to: end

currentPC := start.

[currentPC < end]

whileTrue: [

self translateSingleBytecode: self nextBytecode

]

TemplateBytecodeNativizer >> translateSingleBytecode: bytecode

| nativizer |

codeOffsets at: currentPC put: self position.

self addLabelIfNeeded.

nativizer := self templateNativizerFor: bytecode.

^nativizer assemble

Listing 4.5: Translators for two different bytecodes: LoadFalse and

LoadInstanceVariable

LoadFalseBytecodeNativizer >> assemble

assembler loadRwithFalse

LoadFalseBytecodeNativizer >> assemble

self usesSelfRegister

ifTrue: [assembler loadRwithSindex: self instanceNumber]

ifFalse: [assembler loadRwithRindex: self instanceNumber]

39

Listing 4.6: Translation of the send bytecode into native code

SendSelectorBytecodeNativizer >> assemble

methodNativizer emitSend: self selector

TemplateBytecodeNativizer >> emitSend: selector

environment messageLinker

emitSend: selector

using: assembler

Listing 4.6, the nativizer for send bytecodes delegates the nativization task to the

method nativizer, which in turn passes it to the corresponding message linker. The

last stage of this process was shown in section 4.3.1.

For performance reasons, send bytecodes for arithmetic and logical operations

are inline optimized for common cases such as comparing for equality or adding in-

tegers. Listing 4.7 shows the translation of #= message send, and the optimizations

done at that translation.

4.3.4 Optimizing Method Nativizer

While the template JIT compiler generates native code of good-enough quality

for most scenarios, there were cases where a more powerful compiler was desired.

In particular, the Smalltalk code that replaced the built-in functions of Bee/SVM

is executed intensively, hence small optimizations provide big payoffs. For that

reason, an optimizing compiler was implemented in Bee/LMR.

Unlike the template JIT, the optimizing compiler generates a graph based

intermediate representation of Smalltalk code, following the same directions

as [Cli93, BBZ11, DWS+13, LKH15]. This intermediate representation is then

optimized and finally native code is generated from it.

The main strength of this optimizer is being capable of inlining methods and

block closures, doing value numbering and performing peephole optimizations.

The compiler is designed to allow for more optimizations in the future. Partic-

ularly relevant shall be those related to dynamic compilation such as adaptive

recompilation [HU94], escape analysis [PG92, SWM14], and also others related

40

Listing 4.7: Native code of send bytecode for #= message is optimized in two

ways. If both the receiver and argument point to the same thing, true

is returned without doing any call. If not, but the receiver is a

SmallInteger, false is returned, neither doing a call. Otherwise, a

normal call is done to the lookup mechanism (which includes inline

caching).

SendEqualBytecodeNativizer >> assemble

| retTrue failed unoptimized end |

retTrue := assembler newLabel.

failed := assembler newLabel.

unoptimized := assembler newLabel.

end := assembler newLabel.

assembler

popA;

compareRwithA;

shortJumpIfEqualTo: retTrue;

ifRNotSmallIntegerJumpTo: unoptimized;

loadRwithFalse;

shortJumpTo: end;

@ unoptimized;

pushA.

self emitSend: #'='.

assembler

@ retTrue;

loadRwithTrue;

@end.

41

to compilers in general, such as or loop invariant code motion.

The compiler backend implements an SSA-based linear scan register alloca-

tor [PS99, WF10].

This compiler is only used ahead of time, during bootstrapping, to optimize

a fixed set of methods, most of them being the ones that replaced the built-in

functions of Bee/SVM.

Optimizing Compiler Type System

The nodes in the IR graph of the optimizing compiler do not store type information

and are assumed of the generic type ProtoObject. This means that intermediate

numerical computations are not done using native words of the CPU architecture

but using Smalltalk integer objects. This produces less efficient code, because

each arithmetic and logical operation emitted includes a conversion from small

integers to native and back. However, this design allows seamless interaction with

the garbage collector. The code generated by the compiler is always GC-safe: no

matter where the GC interrupts optimized code, all values in stack and registers

are pointers to objects that can be safely traversed.

As Smalltalk code does not contain type annotations and the compiler is run

ahead of time, the inlining mechanism needs a little help to be able to detect which

methods the lookup algorithm would find for each message send in the code. As

the set of optimized methods is fixed and consists of very simple code (in the

end, it replaces C++ statically typed code), the type information required by the

compiler is provided manually through type annotations.

4.3.5 Avoiding Recursive Nativizer Invocation

As Bee/LMR does not include any interpreter, all Smalltalk code to be executed

has to be nativized before execution. The JIT-compiler is written in Smalltalk and

uses instances of standard Bee classes. For that reason, to JIT-compile Smalltalk

code the system needs to execute Smalltalk, which could in turn need to recursively

invoke the JIT compiler, causing an endless loop.

To avoid that situation from happening, the kernel methods of Bee/LMR

are ahead-of-time compiled during bootstrapping (as described in section 4.5.1).

42

Listing 4.8: The String»#byteAt: implementation in both Bee/SVM (up) and

LMR (down).

String >> byteAt: anInteger

<primitive: StringByteAt>

String >> byteAt: anInteger

anInteger isSmallInteger

ifFalse: [^self error: 'Non integer index'].

(1 <= anInteger and: [anInteger < self _size])

ifFalse: [^self outOfBoundsIndex: anInteger].

^self _byteAt: anInteger

Bee/LMR nativizer is written to only need executing methods in the kernel mod-

ule, so it never triggers a recursive call to itself while working on a method. When

a developer modifies methods of the kernel module, they are nativized just before

being installed. The rest of the methods in the system are just-in-time compiled.

This happens each time the runtime detects that a method that is about to be

executed has not yet been nativized.

4.4 Implementation of LMR Built-in Functions

Bee/SVM includes around 200 primitives that allow accessing built-in functions

of the VM. In Bee/LMR there are no such thing as primitives, but instead there

are about 150 special selectors (starting with _). These messages usually have

shorter implementations than built-in functions, are written in Smalltalk and can

be changed dynamically.

Just to give an example, Listing 4.8 shows the change from the implementation

in Bee/SVM to the one in Bee/LMR. Notice how a primitive that accesses raw

memory can be implemented in terms of the _byteAt: and _size metamessages.

43

4.4.1 Message Lookup

Bee/LMR implements the typical message lookup algorithm of any Smalltalk,

traversing method dictionaries in the superclass chain until an implementor is

found or sending #doesNotUnderstand: in case no implementor is found.

The implementation is fairly simple, and its code is shown in Listing 4.9. The

_lookup: method is invoked when dispatching a message. The result of lookup

can be cached, and the _lookup: method is invoked only if the cache does not

contain a matching entry. The entrypoint to the dispatch algorithm is shown in

Listing 4.10. The caching strategies are described in section 4.4.2.

After the lookup is done4, the algorithm prepares the method for execution,

assuring that it contains native code, generating it if necessary.

The lines at the beginning of _dispatchSend: act as a pragma to the nativizer to

generate code that expects the argument of this method to be in a special register

instead of the stack.

As the algorithm is written in Smalltalk, a naive execution of the lookup al-

gorithm would require recursively calling lookup for each of the messages sent,

causing an infinite lookup loop.

To solve this problem, the _dispatchSend: method is nativized using a special

NativizationEnvironment that is configured replace message lookups with direct

method invocations. This static linking is possible because the methods that have

to be invoked on each message send of lookup algorithm can be pre-computed. The

closure of the methods involved in the lookup algorithm is a small set of methods,

so it is no problem to compute it manually.

4.4.2 Lookup Caching

In Bee/LMR, each message send site is associated to an instance of SendSite. Send-

Site objects are designed to allow implementing inline cachingmechanisms [CPL83,

Ung83, DS84, Ung86]. The first slot of a send site is named dispatch, and points

to the native code of a dispatch routine. Execution of a message send is done by

pushing the arguments into the stack, loading the send site object into a register,

4If no method is found then nil is returned, which causes doesNotUnderstand: message to be

sent.

44

Listing 4.9: The lookup algorithm consists on looking for a method

implementing the sent selector in the behavior of the object that

receives the message. The behavior of an object is a linked list of

method dictionaries that follows the corresponding class hierarchy.

ProtoObject >> lookup: aSymbol in: aBehavior

| methods cm next |

methods := aBehavior _basicAt: 1.

cm := self _lookup: aSymbol inDictionary: methods.

cm == nil ifFalse: [^cm].

next := aBehavior _basicAt: 2.

^next == nil ifFalse: [self _lookup: aSymbol in: next]

lookup: aSymbol inDictionary: methodDictionary

| table |

table := methodDictionary _basicAt: 2.

2 to: table _size by: 2 do: [:j |

(table _basicAt: j) == aSymbol

ifTrue: [^table _basicAt: j + 1]].

^nil

Listing 4.10: The entrypoint to dispach mechanism. The argument is received in a

register instead of the stack. The implementation of _cachedLookup:

and when:use: is shown in section 4.4.2.

ProtoObject >> _dispatchSend: aSendSite

| cm nativeCode |

#specialABIBegin.

#aSendSite -> #regA.

#specialABIEnd.

cm := self _cachedLookup: selector.

cm == nil ifTrue: [^self doesNotUnderstandSelector: selector].

cm prepareForExecution.

nativeCode := cm nativeCode.

aSendSite when: self behavior use: nativeCode.

^self _transferControlTo: nativeCode

45

Listing 4.11: The assembly for a message send in AMD64 architecture. RBX

register contains the NativeCode object corresponding to the

currently executing method. This object contains all the send site

objects present in the method.

push arg1

...

push argN

mov RDX, [RBX+off_send_site_i] ; load the i-th send site object

; into RDX from the current context

call [RDX]

and calling the routine stored in the first slot. This is shown in Listing 4.11.

When a send site is instantiated, the dispatch slot is initialized to the ProtoOb-

ject»#_dispatchSend: routine. During execution, the first time the send site is

reached, the code of _dispatchSend: is invoked. Instead of calling the lookup

directly, this method first looks in a global dispatch cache, an array of <Symbol,

Class> pairs that stores the result of the lookup for that pair. If found, the lookup

in method dictionaries can be skipped, resulting in a performance gain. If not

found, the algorithm performs the lookup and stores the result in the global cache.

The global caching algorithm is shown in Listing 4.12.

The _dispatchSend: algorithm also creates an inline cache of the result of the

lookup. The send site holds a cache instance variable to store this information,

which consists of an array of <Symbol, Class> pairs. After adding an entry for

the method found for the current send, the algorithm changes the contents of the

dispatch slot, sot that it points to a stub that looks in the inline cache before going

to the global cache. This makes lookup more efficient the next time that the same

send site is used. The first time the site is used it creates a monomorphic inline

cache, as shown in Listing 4.13. The monomorphicStub assigned to the send’s

dispatch instance variable is described in Listing 4.14.

As previously stated, the send mechanmism is made of common objects: Send-

Site is a normal class of the system, the dispatch instance variable points to just a

byte array object, and the cache to an array. When a monomorphic cache fails,

dispatch mechanism replaces the array of the monomorphic cache with a larger one,

46

Listing 4.12: Global lookup caching algorithm of Bee/LMR

ProtoObject >> _cachedLookup: aSymbol

^self _cachedLookup: aSymbol in: self behavior

ProtoObject >> _cachedLookup: aSymbol in: behavior

^GlobalDispatchCache current lookupAndCache: aSymbol in: behavior

GlobalDispatchCache >> lookupAndCache: aSymbol in: aBehavior

| method |

method := self at: aSymbol for: aBehavior.

method == nil ifTrue: [

method := self _lookup: aSymbol in: aBehavior.

self at: aSymbol for: aBehavior put: method].

^method

Listing 4.13: Monomorphic inline caching algorithms of Bee/LMR.

SendSite >> when: aBehavior use: aNativeCode

cache == nil

ifTrue: [self monomorphicMap: aBehavior to: aNativeCode]

ifFalse: [self polymorphicMap: aBehavior to: aNativeCode]

SendSite >> monomorphicMap: aBehavior to: code

cache := self takeNextFreeMIC.

dispatch := self monomorphicStub.

cache

at: 1 put: aBehavior;

at: 2 put: code

47

Listing 4.14: The assembly code of the monomorphic stub. Initially, RAX, RDX

and R15 contain the receiver, send site and globals array, respectively.

The stub loads the cache of the send site into RCX, then the

behavior of the object into RSI, then performs the test and, in case of

success, jumps to the target native code. In case of failure the

dispatch stub loads the _dispatchSend: native code from the globals

array (R15) and jumps into its native code.

monomorphicStub:

00: mov rcx, qword ptr [rdx + 0x10]

04: mov rsi, qword ptr [r15 + 0x20]

08: test al, 0x01

0A: jnz @1

0C: mov esi, dword ptr [rax - 0x04]

@1: 0F: cmp rsi, qword ptr [rcx]

12: jnz @2

14: mov rbx, qword ptr [rcx + 0x08]

18: jmp qword ptr [rbx]

@2: 1A: mov rbx, qword ptr [r15]

1D: jmp qword ptr [rbx]

48

Listing 4.15: Polymorphic inline caching algorithms of Bee/LMR

SendSite >> polymorphicMap: aBehavior to: code

cache _size == 2 ifTrue: [

cache := self takeNextFreePIC.

tally := 0.

dispatch := self polymorphicStub.

self bePolymorphic].

aBehavior == SmallInteger instanceBehavior

ifTrue: [cache at: self maxSize + 1 put: code]

ifFalse: [

tally == self maxSize ifTrue: [self reset].

cache

at: tally + 1 put: aBehavior;

at: tally + 2 put: code.

tally := tally + 2]

that has enough space to hold polymorphic cache information. The polymorphic

inline caching algorithm is shown in Listing 4.15. The corresponding assembly is

similar to the one of the monomorphic but with more cases.

4.5 Wrapping up the LMR into Bee

4.5.1 Bootstrapping

The process of creating an executable runtime system from code written in the

very same language that the runtime executes is known as bootstrapping. It can

pose a problem when the language lacks an already working runtime system5,

as would not be able to run the code that generates the executable. Luckily, in

the case of Bee/LMR we counted with Bee/SVM, which of course counts with

already bootstrapped C++ compilers and assemblers. Therefore, it was possible

to generate the Bee/LMR kernel image from the running system, placing inside it

the native code of all the methods that belong to the kernel module.

During the creation of this image, things that refer to the host VM are removed.

5This usually happens when the language is in process of being implemented for the first time.

49

Kernel Library (bee.exe)

Bee Runtime system

kernel classes

kernel methods

lookup

arena

methods'
native code

GC

library loader

JIT classes JIT methods
methods'

native code

Bytecode to Native Code JIT (JIT.bsl)

Compiler
classes

Compiler
methods

methods'
native code

Source code to Bytecode Compiler (SCompiler.bsl)

HW classes HW methods
methods'

native code

HelloWorld Library (HelloWorld.bsl)

Figure 4.2: Bee modules. Kernel library contains minimal functionality to

support itself and to load other libraries. Loading of JIT and Bytecode

compilers is optional. Except for kernel and JIT, libraries can be

shipped with just source code, with precompiled bytecodes or with

native code.

Methods that refer to primitives, or which access state and code of the host VM

like memory spaces, lookup, GC and the library loader are replaced with their

Smalltalk-implemented complementary versions. The JIT is implemented as a

separate module, which is written using the same mechanisms as the kernel module,

and that can be loaded when needed. A high-level view of the ecosystem is shown

in Figure 4.2.

4.5.2 LMR Development Environment

The development environment used for implementing Bee/LMR is the same used

for normal applications in Bee, which is a traditional Smalltalk. Before Bee/LMR

was fully functional, Bee/SVM was used to run the environment. Bee/SVM is also

useful when implementing changes to critical parts of the system, if developers

want to avoid crashes of the system they are running on.

50

4.6 Related Work

Various projects have experimented with changes and variations of the two-layer

architecture.

4.6.1 Self-hosted Virtual Machines

Lisp’s tower of interpreters [Smi84] and Smalltalk’s self-hosted Squeak [IKM+97]

are classic examples, which to a certain degree achieve the goal of implementing a

language in itself. More recent examples of this approach include PyPy [RP06],

Rubinius [FM08], JikesRVM [AAB+05], Squawk [SC05], Maxine [WHVDV+13],

and SubstrateVM [WSH+19].

The self-hosted VMs are mostly written in the same language they support

or a subset of it. While Lisp’s tower of interpreters has the ability to change

the language at each level, the approach more widely used for VMs can be seen

with OpenSmalltalkVM for Squeak and PyPy, which are translated to C and

then compiled statically with a standard C compiler. JikesRVM, Maxine and

SubstrateVM use a bootstrap VM to directly generate a native executable image

instead of C code.

The C-code approach gives some leeway and enables Squeak for instance to

provide simulation tools that allow it to execute the VM code the same as normal

Smalltalk code, which makes it possible to use the same development tools for

developing the VM as for the application. However, this simulation is often around

1000x slower than the real VM [BKL+08]. Similarly, the PyPy implementation can

be executed as normal Python code and developers can use their standard Python

tools to work with it.

The biggest drawback is the low performance of executing a metacircular VM

on top of itself, which is not optimized and meant to be used in production by ap-

plication programmers. Self-optimizing AST interpreters [HWW+15, WWS+12]

propose to reuse existing VM infrastructure, combining a Java JIT compiler, which

is written in Java, and AST interpreters, also written in Java. They show how sup-

port code for new languages can easily reuse optimization components of another

host VM to be efficient.

Furthermore, these approaches still have the two-layer architecture discussed

51

before, which clearly separates applications from the VMs.

We illustrate these designs in Figure 4.3. On top, fig. 4.3a shows the two-layer

architecture, while next fig. 4.3b depicts self-hosted VMs that can run the VM code

as an application.

4.6.2 Designs with Extensible Metaobject Protocols

While still maintaining a two-layer architecture, Fully Reflective Execution Envi-

ronments (FREE) [CGMD15, CGM16] aims to widen the APIs provided by VMs

to enable the customization of ideally all aspects of a VM. This is achieved by

designing metaobject protocols that can for instance change how method lookup

is done, fields are accessed, or even how garbage collection and JIT compilation

are done. However, as illustrated in fig. 4.3c, this still maintains the architectural

distinction and does not give developers access to the implementation of the VM

itself, only providing more abilities for customization. Pinocchio [VBG+10] is

another example for a Smalltalk VM where the interpreter itself can be adapted

via a metaobject protocol.

On the two layer designs, while theoretically it would be possible to update

parts of the VM code while running, in practice no system is really meant to be

lively programmable in production environments.

4.6.3 Beyond Object-Oriented Virtual Machines

Outside the world of object-oriented VMs, projects like SML# [OUH+14] aim to

combine application and runtime by compiling both into a static binary. Though,

while the end product is a combination, SML# still separates the runtime from the

application.

For general applications, Kiczales [Kic96] proposed the notion of Open Imple-

mentations. In addition to a standard interface, a module is expected to provide

a meta-interface. This meta-interface can then be used to control and adapt the

implementation of a module, perhaps to select an algorithm that has better per-

formance in a specific context. This idea builds on the notion of metaobject

protocols [KDRB91] and metaarchitectures, in the context of which research ex-

plored a wide range of issues and designs [Tan09], also including compile-time

52

GC Built-insJIT Compiler

app
devs

vm
devs

Application Development Environment

VM Development Environment

APP LibrariesApp code

VM

(a) Two-layer architecture of traditional VMs, clearly separating application and VM, with

limited APIs for interaction.

Application Development Environment

APP LibrariesApp code

GC Built-ins

R/W memstatic dispatch
augmented semantics

JIT CompilerVM

Built-insJIT CompilerGCVM

(b) Self-hosted VMs maintain the layered architecture, but can allow developers to execute

the VM as if it is an application.

Application Development Environment

GC Built-ins

APP

JIT Compiler

VM Development Environment

LibrariesApp code

VM R/W field lookup

MOP
activate methodR/W arg

(c) VMs with Metaobject Protocols to customize field access, method lookup, and other

aspects from within an application.

Figure 4.3: VM implementation approaches with the traditional two-layer design.

53

metaobject protocols [Chi95].

Though, these approaches arewhat Fully Reflective Execution Environments [CGMD15]

built on, which still relies on a fixed meta-interface, and thus, enforces a strong

boundary between modules, or in our case VM and application.

4.6.4 Designs with Reduced VM and Application Boundaries

Klein [USA05] pushed the boundary a bit further. It was a self-hosted VM written

in Self for Self, that was object-oriented, metacircular, and reactive, meaning that

it could be changed while running. In our understanding, it blurred the line

between VM and application much more than any of the other approaches. Thus,

it is an inspiration of our work, a first attempt to create a VM that does not

strictly separate the application and can be evolved as one evolves an application.

Unfortunately, Klein has neither implemented a self-hosted GC nor achieved the

full Self functionality and performance.

Another point of inspiration is the Mist project,6 which is explained as a

Smalltalk without a VM. To our understanding, it also aimed at being a self-hosted

Smalltalk implementation that compiles itself to native code, but is still at the early

idea stage.

6https://mist-project.org/, Martin McClure, 2016

54

https://mist-project.org/

Chapter 5

Garbage Collection and Memory

Management

In Bee/SVM the memory manager is invisible to the application. The interface

to access it from the application is minimal, only allowing to trigger major GC

passes and asking aobut the heap size.

On the other hand, in Bee/LMR the garbage collector model is placed at the

language level, and modelled as any other entity of the system that has shape and

behavior: with objects.

5.1 Implementation Challenges

In LMRs the object heap is managed by a lively programable set of objects, and

there is no low-level interface to the garbage collector functionalities, but only a

high-level unified model where everything is an object. At implementation time,

this unification posed a series of challenges that had to be tackled in order to create

a working solution.

5.1.1 Garbage Collection of Runtime Objects

A first challenge is that LMRs add runtime entities to the already existing set

of objects of metacircular environments. This includes allocation spaces, stacks,

55

arrays, memory and even the GC itself and its objects, which are represented by

regular instances of classes.

Thus, by tracing the root pointers of a program, the GC will find itself, and all

the other objects that are needed by its own implementation. Examples of these

objects are the GC instance itself, its class, methods, spaces, and even the stacks.

The transitive closure of these objects is also traced.1

The garbage collector needs to determine which objects have to be followed and

which should not. Objects created temporarily by the collector should not be left

allocated consuming memory after collection finishes, and unlike classic VMs, the

runtime needs to have its own objects be collected from time to time.

5.1.2 Execution Context Unavailability During Garbage

Collection

A second problem arises in LMRs also as a consequence of having a common

paradigm for VM and application-level objects. Because of the split-layer design,

typical garbage collectors, even in self-hosted implementations like those of Squeak

or PyPy, work within a separate execution environment that is disconnected from

the environment being collected.

Methods and classes of those garbage collectors belong to a separate layer that

is unreachable while traversing roots of the collected space. Within the heap, the

GC algorithm can freely change object pointers as needed to adjust references.

However, on the other hand the GC of LMRs are made of standard objects living

in the same memory as the application.

These objects not only live in the same heap as application-level objects, but

are indistinguishable from other kinds of objects. For example, application classes

subclass the very same Object class from which the GarbageCollector class inherits.

Native code is also represented using simple objects. Unless specially treated, code

can be moved by the GC throughout memory as any other object. This means

that at some point during GC different copies of the garbage collector code can be

alive and reachable.

1By transitive closure of a set of objects we mean all objects that are directly or indirectly reachable

from the root objects.

56

For the reasons described above, a naive implementation of a GC for LMRs

cannot pause all high-level execution, as its own code is written at high-level. LMR

implementors have to face the problem that common garbage collection algorithms

leave objects in an inconsistent state while the garbage collector is running. Object

headers and pointers get mangled to detect live objects and to rearrange references,

which means that at intermediate stages of collection heap objects are not able to

receive messages.

The garbage collector then needs to either be completely disconnected in some

way from the collected execution environment, or be altered in a way that its

objects are kept operative during its work. Two specific examples of this problem

are described below: forwarding pointers in copying collectors and pointer reversal

in mark-and-compact [JHM11].

Since the GC is a crucial component that needs to be work at all time, we need to

ensure always working objects, and prevent lost writes and lost objects. This restricts

design choices for GC algorithms but allows us to build a reliable system.

Always working objects

As the GC code depends on the interaction of common objects, during GC it is

not possible to apply GC algorithms that temporarily overwrite object data, such

as those that install forwarding pointers into object headers or that thread pointers.

Forwarding [FY69] is a GC technique that overwrites the original header of

moved objects with forwarding pointers to their new locations. Pointer rever-

sal [SW67] is a technique used to eliminate the need of extra memory for a

tracing stack, using the slots of the objects to implement a linked list that is

used as a stack-like structure. In the mark-and-compact algorithm, pointer thread-

ing [Mor78, Jon79] is done to efficiently find all references to each moved object.

With such algorithms, if the GC tried to send a message to a temporarily over-

written object it would cause undefined behavior because it would not find the

expected information of the object in its header, such as its class or its size.

57

Lost Writes

The garbage collector has to avoid moving objects that might change during garbage

collection. During GC, objects are typically moved (copied) to another area when

being reached for the first time when tracing the object graph. As the GC continues

tracing, it can find more references to the moved objects and update them with the

new addresses.

If the GC modified a moving object, it could cause inconsistencies because it

may be impractical to determine whether an object is the new copy or the old

one, and during GC some objects might still see the original version instead of the

modified one because they have not been traced yet.

Lost Objects

The garbage collector switches the allocation area when a collection is triggered,

so that new objects needed for GC do not get mixed with the rest and can get

discarded as soon as GC finishes. This means that no new objects created during

GC survive after GC ends.

In particular, it is not allowed to JIT-compile methods during GC for that reason.

The system must assure that any code required for executing GC has already been

compiled before the GC starts.

5.1.3 Garbage Collection Debugging

As part of a live metacircular system, it is desirable that the garbage collector can be

debugged, at least partially, within the standard environment with standard tools.

But this poses another chicken-and-egg situation: in live metacircular environments,

standard tools are implemented within the language, and require a fully functional

user-interface handling events; but stop-the-world garbage collectors require pausing

the high-level program execution, including the user-interface. A solution to this

problem is given in chapter 6, through the use of an out-of-process debugger.

58

5.2 Design Directions

One of the toughest challenges when implementing Bee/LMR has been the garbage

collector. As previously explained, the garbage collector needs to be able to traverse

itself, to leave objects operational while running and to be debuggable with standard

tools.

5.2.1 Two Possible Approaches

We discovered two possible approaches to achieve our goal. The first one is to use a

standard garbage collection algorithm and to disconnect its execution environment

from the garbage collected space. This avoids the problem of the GC collecting

itself, i.e., traversing the data structures it uses, and also the problem of exposing

inconsistent object state. This approach requires generating a code closure of all

the methods and objects involved in GC, and compiling them into a separate heap.

As the system is dynamically typed this is a cumbersome step, because the lack of

type annotations makes it hard to find such a closure.

A second approach is to modify existing GC algorithms to have objects in a

consistent state throughout the complete garbage collection process. This means, it

restricts the GC design more than the first approach and might have performance

implications, but avoids having to determine a code closure for the GC.

We implemented both approaches. We shortly describe the first one next, to

then explain why we decided to only support the second, which is fully described

in the following section.

A Garbage Collector in a Bottle

Using the first approach we implemented a mark-and-compact threading collector

for the old space and a generational scavenging collector [Che70]. We statically gen-

erate a closure of the GC code and the objects required for it, by manually picking

the methods that go into the closure. This closure is put inside a dynamically-linked

library (DLL) which can be regenerated on-the-fly and replaced as many times as

needed at runtime.

The closure is filled with a copy of all objects related to the garbage collector:

classes, methods native code, etc. The collector uses a separate space for new objects

59

it creates, which it discards after collection finishes. This makes the GC runtime

independent of the original objects. The benefit is that important objects, such as

for example the Object class, can be left in inconsistent state during GC, as the

GC library uses its own copy of that same object.

Other GC algorithm variations were implemented afterwards tuning the in-

ternal structures of generational and mark-and-compact collectors, and even a

multithreaded variation of the mark-and-compact one was implemented.

For development, we were able to use our standard high-level tools to analyze and

debug the algorithms. For example, we implemented a set of around one hundred

GC tests with high-level tools, where external spaces with different objects inside are

dynamically generated. GCs can be debugged as they traverse these spaces, to check

which objects are marked, collected and copied. For debugging the integration as a

DLL, we first had to resort to low-level tools, however that problem was solved by

the design of the tools described in chapter 6.

Manually maintaining the closure of methods and objects involved in GC proved

to be a time-consuming task, because this closure consists of hundreds of methods.

While the first GC approach is powerful and allows for more efficient algorithms

than the second one because it does not have the limitivations mentioned before,

we decided to drop support for it until we implement a type inference system that

is capable of mostly automatically finding the code closure of the GC code. This

was left as future work.

5.3 Overall Design of Bee/LMR Garbage Collectors

This section details the implementation of the second GC approach, a garbage

collector that can traverse itself.

Themain point of access to the set of objects that performmemorymanagment is

an instance of the classMemory. This object provides anAPI to allocatememory for

new objects, to iterate through the objects of the different parts of the object heap,

to collect heap usage data and to release memory through a pair of generational

and old-space heap garbage collectors.

The memory object also implements operations such as finding references to

objects in the heap and stack, and converting references from one object to another,

60

that is, to implement become.

To be able to have a working execution environment throughout the process

of garbage collection, for the old space we switched from the mark-and-compact

algorithm with object threading implemented in the first approach to a standard

copying collector. This has an impact on memory usage, however the copying

collector algorithms have characteristics that aid in leaving objects in operational

state during collection. Specifically, the main change compared to traditional

copying collector implementations was the use of external forwarding tables, so

that during GC the only modification done to objects in heap is the mark bit. This

external forwarding table technique was used also for the generational GC.

5.3.1 Object Heap Layout

The process addressing space is divided into chunks of memory called GCSpaces.

Each GC space represents a virtual address range allocated by the Operating System.

The memory of each space can either be committed or just reserved.

A small portion of the heap is defined as a young area, delimited by youngBase

and youngLimit; the rest is considered old space. The young area consists of an eden

space an two smaller from and to spaces. Within the old area, there coexist spaces

for pinned objects, large objects (which are also pinned), image segments and an

allocation zone for tenured objects, that is managed by the collector described in

section 5.5.

The old allocation zone is split in equally sized chunks that can be freely com-

mitted and decommitted as objects are allocated, moved and released.

5.3.2 Object Allocation

Objects are created using bump pointer allocation as shown in Listing 5.1. The fast

path of this contiguous allocator bumps the nextFree pointer of the eden space

and returns, if the obtained buffer is within space limits.

When an allocation attempt fails, it may mean that the eden space is full or that

the object being allocated is too big. In the latter case, the allocator creates a new

large space to allocate just that object; in the former case it may trigger a young GC

pass (if GC is enabled) and then retries using a slow path allocator. This second

61

Listing 5.1: The allocation mechanism tries to just bump the nextFree pointer of

the edenSpace. If that fails, the slow path checks for large objects,

triggers GC if needed and, finally, tries to allocate again.

Memory >> allocate: size

| oop |

oop := edenSpace allocateIfPossible: size.

oop _isSmallInteger ifTrue: [^oop].

size > LargeThreshold ifTrue: [^self allocateLarge: size].

CRITICAL ifFalse: [self collectIfTime].

^self allocateCommitting: size

Memory >> allocateCommitting: size

| oop |

oop := allocator allocateIfPossible: size.

oop _isSmallInteger ifTrue: [^oop].

^oldZone allocate: size

allocator as the least resource commits more memory from the old allocation zone.

5.4 Generational Garbage Collector

For newly created objects, Bee/LMR implements a copying generational scav-

enger [Che70, Ung84, Ung86]. New objects are created in the eden space. When

an allocation attempt is made and there is no space left, a minor collection is done.

Survivors from eden and from are moved to the to space, which is swapped with

from when collection finishes. Objects that survive a second minor collection,

passing from from to to are marked so that they get tenured if they survive another

minor collection.

After collection finishes, the memory looks at the survival statistics and adjusts

the size of the eden as shown in Listing 5.2. The adjustment heuristic tries to keep

a small eden size as long as the survival rate is kept low (less than 8%). A smaller

eden is preferred because increases the chances of keeping the memory used for

allocation in the processor’s cache. An increase in survival rate is a hint that the

generational hypothesis is not holding. For that reason, when it crosses the 8%

62

Listing 5.2: Adjustment of eden size according to survival rate.

Memory >> adjustSpaces

| stats rate committed limit delta |

stats := meter runs last.

rate := stats survivalRate.

committed := edenSpace commitedSize.

limit := edenSpace commitedLimit.

stats youngSize // 2 < (0.8 * committed) ifTrue: [^self].

rate > 0.08

ifTrue: [

delta := committed * (rate * 4 + 1).

edenSpace commitIfPossible: delta asInteger]

ifFalse: [

delta := committed * (0.8 - rate / 2).

edenSpace decommitIfPossible: delta asInteger]

the policy quickly increases the size of the eden space to give objects more time

between minor collections, increasing the chances of lowering the survival rate

again.

5.5 Old-Space Garbage Collector

For the old-space heap, Bee/LMR implements a region-based one-pass opportunistic-

only evacuatingGC, in the tradition of garbage-first garbage collectorsG1 [DFHP04,

ZB20] and Immix [BM08].

Like G1 and Immix, in Bee/LMR the old space heap is divided into multiple

equally sized regions. The default region size in Bee/LMR is 256kb and the number

of regions grows as the process memory consumption goes up. To defragment

the heap, the G1 algorithm includes a compaction step. After the initial marking

phase is complete, it selects a group of regions to evacuate based on their occupancy

rate. Live objects stored in regions with smaller occupancy are moved to different

regions where they get compactly allocated one after the other.

63

5.5.1 Compaction Mechanisms

To perform compaction, the collector needs to both move the objects from the

evacuated regions and also to update the references to the moved objects from

referencing objects. The pointers to be updated could be anywhere in the heap, so a

naive updating mechanism would require a full sweep through the whole memory,

which would be inefficient.

Currently, there exist multiple algorithms that help to optimize this case. For

example, to allow for efficient pointer updating, G1 maintains an individual remem-

bered set for each region’s incoming pointers. Therefore, to update the references

to the evacuated objects it only has to traverse the incoming pointers list of the

remembered set corresponding to the evacuated spaces.

Immix GC avoids fragmentation differently, using two mechanisms. On one

hand, it maintains the occupancy rate of each block, and when under some prede-

fined threshold it marks the block as recyclable. After marking, it sweeps through

all recyclable blocks to identify their free regions. As doing so on a word per word

scheme would be too costly, instead it subdivides blocks into lines, and maintains

mark bits for each line, so that block sweeping can be done quickly. On the other

hand, Immix avoids fragmentation by applying opportunistic defragmentation.

Before starting the marking phase, Immix selects blocks to evacuate. As the blocks

are preselected before the marking starts, the tracing algorithm can determine

whether an object is moving or not at the time it finds a reference from another

object. This allows for opportunistically updating the references as the object heap

is being traced.

Bee/LMR old-space heap GC implements a garbage-first approach with oppor-

tunistic defragmentation only, the second Immix mechanism. Before tracing the

object heap, the GC selects the regions to be defragmented based on the occupancy

rate computed in the previous GC. During tracing, it updates the pointers to

evacuated objects at the same time as it does the evacuation itself.

For simplicity and run time performance, there is no separate sweeping of lines

and recycling of fragmented spaces; the spaces are either evacuated and released, or

not released at all. The cost of this is an increment on internal fragmentation and

floating garbage: space occupied by objects that are found to be unreachable is not

64

reclaimed until a successive GC cycle where the region occupancy goes below a

predetermined ratio.

The forwarding pointers of the old-space heap GC are stored at a constant offset

from the object being forwarded, in an address space reserved just after the object

region. This effectively halves the addressing space available to the process, which

is not a problem because Bee/LMR is implemented for 64-bit addressing spaces.

5.6 Related Work

The aim of our research in Bee/LMR was not to create new GC algorithms but

to be able to apply standard GC techniques, with modifications if needed, to

implement a working system.

The problem of garbage collecting self-hosted environments has been studied

before. One of the main differences between Bee/LMR and other systems is the

total unification of the aplication and execution runtime layers, including the VM

code and the object heaps, although this is not always the case, as shown next.

Squeak [IKM+97] and PyPy [RP06] are examples of self-hosted implementations

that do not unify the application heap with the VM, as the code of the latter is

translated to C. With them, the VM manages the object heap, while the C runtime

library manages the heap used by the VM, which basically uses malloc.

Truffle/Graal [WW12, WWW+13b], another self-hosted VM, does not imple-

ment a GC on its own. Instead, it relies on the one of the VM it runs over, HotSpot,

which is written at the lower C++ level.

Other Java VMs like Maxine [WHVDV+13] and Jikes [AAB+05], while they

do split the aplication layer from the execution runtime to the programmer, they

internally model VM concepts with objects and implement a GC that traverses

those objects, which from the point of view of the GC are indistinguishable.

However, as the VM code cannot be modified at run time, and besides the code has

type annotations, the objects representing parts of the VM like the GC itself can

be determined automatically ahead of time, fixed in memory and do not require

moving.

Tachyon [CBLFD11] and Klein [USA05] do not provide a GC.

65

Chapter 6

Metaphysics
A Framework for Working Remotely with Potentially Broken

Objects and Runtimes

A main goal while designing LMRs was to make it practical to develop VMs by,

instead of manipulating files, running the system andmodifying its methods, classes

and, more generally, objects. As manipulating kernel objects can cause fatal errors,

we experimented with adapting live programming tools to make them safer for the

development of core LMR components. Furthermore, we made them robust so

that they could work on crashed LMRs or allow debugging systems that were not

fully working.

An additional feature to the original Smalltalk IDE was implemented for the

Bee/LMR project: an out-of-process debugger. This tool lets developers inspect the

state of a frozen Bee/LMR process, to debug crashes and other failures. This tool

reuses the GUI components of the rest of the development environment, however

it required implementing a framework, called Metaphysics [PM17], that brings

access to objects and memory in the remote process.

With Metaphysics it became possible to create native code debugging and profil-

ing tools. These new tools make full use of the metacircularity of Bee/LMR and

enable a dynamic, fast-paced edit-test workflow like the one we are used to when

developing application-level code.

67

6.1 Context

In LMRs, vital components of the system are exposed to the programmer via

the normal inspectors, debuggers and code browsers, which run within the same

environment. Those components can be changed quickly, giving instant feedback.

However, while changing core components, programmers are frequently faced

with the problem that a small incorrect modification leads to the crash of the entire

system leaving high-level tools unresponsive.

In the first stages of Bee/LMR’s development, we used standard low-level tools

such as GDB and IDA Pro for debugging such situations. While these tools are cus-

tomizable and could be made to work with the meta information provided by Bee,

they do not provide the fluent interactivity expected by Smalltalk programmers.

Furthermore, dealing with metadata from these tools requires writing scripts that

duplicate the logic already present for tools inside the running system.

To avoid these issues, we created a new set of tools that enrich the programming

environment. Unlike the set of existing Smalltalk tools such as inspectors, browsers

and debugger, the new tools are designed to communicate to a remote Smalltalk

image running in a different process, allowing developers to work with objects in a

remote environment which may be frozen for debugging. The process might have

been paused by the OS because it executed an invalid operation, or by the developer

for debugging purposes. In any case, the process is still alive, its memory can be

read or written, and it may even be possible to change it and to let it continue

executing.

For these new tools we developed the Metaphysics framework, inspired by ideas

of [BU04]. This framework allows access to remote objects by providing mirrors

for structural reflection and proxies for behavioral intercession, making possible

to adapt message sending, i.e., method invocation semantics, based on the specific

situation.

6.2 Uses

This framework was designed to deal with a target system that potentially was not

working. This could be either a process that was paused by the operating system

68

or a memory dump of a program that crashed. Either way, no execution is taking

place in the target. Operating systems provide different APIs that allow to read

and write the target’s memory, registers, processor flags, etc.

The LMR programmers access the target from a fully-working local IDE. This

local environment is frequently very similar to the target one, but it does not

need to be identical. There might be different classes loaded in each system, or

their methods of the same classes could differ. The framework allows completing

lacking information of the target system, like for example the shape of a class,

with information that the programmer supposes to be equivalent in the local

system, which they can fully access. The tools are designed to allow working in

an environment were objects of the target system can be inspected with the same

freedom as local ones.

The contexts in which LMR programmers use these tools can vary greatly

and arbitrarily, so there does not seem to exist a single approach that matches all

situations: sometimes they need to just access structures, sometimes to execute

code remotely, sometimes to simulate what a remote method activation would do.

The requirements may even not be defined beforehand, they might need to change

from one kind of execution semantics to other dynamically as their exploratory

tasks evolve.

The reminder of this section gives relevant examples that we came across while

working on Bee/LMR.

6.2.1 Remote Object Discovery

A system gets paused and we want to obtain information about its most important

objects: their addresses, the present classes, globals, symbols, etc. We have to

discover where objects are and we do not have yet access to the symbols of the

system, so it may not be possible to send messages to objects.

In the memory of the remote system we can find all metainformation we need,

like the dictionary of globals, from where to start fetching well known objects such

as true, false and nil, the class Object, its metaclass, the class CompiledMethod, etc.

In this case, there is little need for extra debugging information, and even if it

69

existed it would be hard to keep it up to date with moving objects in the heap.1

Given the address of an object it is possible through meta information to access its

fields and internal structure. This situation is a good candidate to be solved with

mirrors [BU04], because it requires mainly structural reflection.

6.2.2 Remote Code Execution in the Original Process

When profiling a system, we want to gather information about the execution trace

by looking at the compiled methods in the stack. The situation is in principle

similar to the previous example, however it poses some new difficulties. While

traversing a Smalltalk stack to gather a call trace can be easily done with mirrors,

getting information such as the source code of compiled methods is a more complex

operation in Bee/LMR, because Bee’s mirrors do not support it directly.

The objects that represent compiled methods typically do not reference their

source code directly, because it usually resides in secondary memory. Instead,

methods use descriptors that allow locating the code in source files when access

is needed. These descriptors are part of the internal structure of methods, which

require implementing certain programming logic.

Accessing the internal structure of a compiled method to find its source code

directly would be a bad practice, because it means violating encapsulation. In

general, objects are designed in ways that decouple the external view from the

internal structure. In practice, this means when looking at an object from the

outside, it can appear very different from its actual internal representation. Most

of the time, the provided view is more high-level and we would prefer to work

with it through an object’s external interface, and only go into the internals when

it is really necessary.

Back to our example of fetching the sources of a compiled method, a method

such as #sourceCode encapsulates all this process, which can be complex. We

want to just execute it in the target system and get the result.

1In case the process was unfreezed later on.

70

6.2.3 Simulated Local Evaluation of Remote Code

In certain situations, it is necessary to completely pause a VM for debugging,

keeping it alive in memory and attaching externally to the process. This can happen

because something failed or because we want to analyze one of its components in

detail.

We might want to inspect objects of such a system, understand the execution

context, send messages to objects, and perhaps make changes to recover from a

crash. However, if there has been a low-level failure, the objects we are accessing

might have been damaged, which means that their own memory or the one that

determines their behavior (class, methods, etc) could be corrupted.

Let us consider again the example of fetching the sources of a compiled method,

this time in a crashed system. In that case, we may not be able to remotely execute

code of #sourceCode because that would modify state of the runtime and make

debugging more difficult. Instead, we could use an alternative approach: we could

take the remote code of #sourceCode and simulate its execution on the target

system by interpreting it locally.

6.3 Design of the Metaphysics Framework

This section discusses how the Metaphysics framework solves the problems identi-

fied in the previous section for the Bee/LMR.

Our design is explained taking into consideration how it evolved with the

increasing needs as Bee/LMR was developed.

6.3.1 Base Metaphysics Concepts

The base of the framework consists of a reification of a remote Smalltalk runtime

and its objects. It was implemented using the underlying OS API for external

process debugging, which enables communication with the remote objects mainly

by reading and writing the target process memory. The main design concepts of

the Metaphysics framework are depicted in Figure 6.1.

A Handle represents an entity living inside a given runtime. There are two

kinds of handles: ObjectHandles for referring to typical objects in the runtime,

71

object handle

a runtime

0x401008

ru
nt

im
e

object format

oid

storage
shapes

bridge

Figure 6.1: Object handles are opaque references to objects in a remote runtime.

They are able to answer querys about the objects they point to only by

delegating them to their runtime.

and FrameHandles to refer to stack frames. All handles know the runtime they

are associated with, and specific subclasses contain different slots that allow to

individualize and access the entities they point to, be them objects or stack frames,

in the associated runtime. Runtimes agglomerate a set of objects that work as a

configuration:

• A Storage, that abstracts the OS API to read and write from the target

process memory.

• An ObjectFormat, that understands and is able to read and write remote

object headers.

• AMetaspecies, that knows the shape of classes in the remote system, allowing

to read and write slots of objects in the target system without using their

remote metadescription.2

• A Bridge, that is able to locate and deliver handles for global objects in the

remote system.

6.3.2 Mirrors

Structural reflection on the objects of the remote runtime is achieved with mirrors.

A Mirror in the Metaphysics framework is no more than a container of a Handle.
2Metaspecies are needed at initial stages, to provide early access to the metalevel of objects and for

raw access to object slots using mirrors.

72

Listing 6.1: Use and implementation of augmented semantics.

ClassMirror >> #name

| name |

name := self getInstVarNamed: #name.

^name asStringMirror

StringMirror >> #asLocalString

^handle asLocalString

ObjectHandle >> #asLocalString

^runtime stringOf: oid

Runtime >> #stringOf: oid

| size |

size := objectFormat sizeOf: oid.

^storage stringAt: oid sized: size

Different subclasses provide an interface that allow to perform basic queries on the

objects mirrored. An ObjectMirror allows accessing an object’s header and slots,

while it can also provide a mirror on the object’s class.

On Bee, mirrors work as a layer that makes a distinction between remote objects

and local ones. By default, methods that access object internals return new mirrors

that contain the direct references pointed by the slots of objects.

Consider the following example: when a class mirror is sent the message name,

the result is a mirror to the string stored in the name slot of that class. To do

something meaningful with that mirror, it will normally be needed to get a local

copy of that string, which is done through the method asLocalString.

The mirror model of our framework, in conjuntion with the design presented

in section 6.3.1 is enough to solve the problem of remote object discovery stated

in section 6.2.1.

6.3.3 Subjects, Gates and Execution Semantics

For more complex behavior, a model that allows varying message execution se-

mantics was created. The experience we obtained in the situations described in

73

aSubject aMirage

CompiledMethodhandle to a CM

handle class

gate

Figure 6.2: When aSubject receives a message, it delegates execution to aMirage,

which in turn simulates the execution of the message. In this case the

proxied object is a compiled method, so the mirage will create an

interpreter for the local CompiledMethod class. The interpreter will

perform lookup on that class and traverse the AST of the method

found to generate a result.

Listing 6.2: Delegation of dispatch mechanism in subjects.

Subject >> #doesNotUnderstand: aMessage

^gate dispatch: aMessage

sections 6.2.2 and 6.2.3 showed that mirrors were only a first approximation to

the dynamic environment we desire to work in.

Mirrors allow obtaining references to objects of the target system by reflecting

on their internal structure. After that, given a reference to an object, we would like

to be able to treat it as if it were a local object, but giving arbitrary semantics to

the way in which messages it receives are executed. That requires the development

of another model that implements the different possible execution semantics. For

tackling those varying needs we modelled subjects.

A Subject is a proxy to an object in the remote system. It only understands

the #doesNotUnderstand: message, which it overrides to delegate execution to

gates. Gates of different types implement different execution semantics, working as

a strategy pattern. Listing 6.2 shows the implementation of this mechanism.

The only slot of a subject is its gate, and in turn the gate points to the object

handle. By implementing differently the #dispatch: method, different gates can

produce arbitrarily different behavior on the subject when receiving a message.

Separation of subjects and gates is done to allow keeping the subject interface clean,

so that most messages fall into the #doesNotUnderstand: trampoline.

74

During Bee/LMR development we have identified 3 kinds of gates, which we

can choose to use depending on the situation:

Trigger Gates cause execution of the message on the remote process, by modi-

fying the process state, resuming the process and returning a result. They

correspond directly to the semantics needed to tackle problems described in

section 6.2.2

Direct Gates cause the local interpretation of the message, fetching the source

code of methods from the remote object to which the message was sent.

Mirage Gates cause the local interpretation of the message, fetching the source

code of methods from a local class that is equivalent to the one of the remote

object.

Direct and Mirage gates correspond to the different kinds of execution semantics

desired in section 6.2.3. They required the implementation of a source code

interpreter. This interpreter takes as input an AST, a receiver and an array of

arguments. It iterates the nodes of the tree, evaluating them and finally returning

the result of the evaluation.

Figure 6.2 depicts the collaboration of different objects of the framework. Ex-

ecution of messages locally for remote objects can give place to handles of local

objects. For example, when a new object needs to be created during interpretation,

it is instantiated locally by the interpreter, which returns back an object handle

pointing to the new object. Gates do not need to know if the handles are local or

remote, as both respect a same abstract API.

Changing the semantics of a subject is easy: the programmer only has to take the

object handle from the gate and create a new subject with a new kind of associated

gate. Messages with arguments are allowed, as long as each of them is also a subject.

6.4 Related Work

As mentioned, we built on the ideas of mirrors [BU04]. Similar work includes

for instance Mirages [MVCTT07], which try to reconcile mirrors with behavioral

intercession in AmbientTalk, an actor-based distributed OO language.

75

The general notion of remote debugging of OO environments has been studied,

too. For example, the Maxine Inspector [Mat08], Jikes RDB [MH13] and Mer-

cury [PBF+15] implement remote debugging using reflection via mirrors or other

kind of middleware. While Mercury provides similar functionality to Metaphysics,

its mechanisms differ widely.

On one hand, Mercury introduces a modified language, MetaTalk, where the

meta-level is structurally decomposed (via stateful mirrors), and the target system

has to run a modified VM that is able to exploit the language features; it provides

an adaptable middleware, Seamless, to communicate both systems, a runtime-

debugging support layer has to be embedded to the target environment, and

reflection support is limited to components wrapped by mirrors.

On the other hand, Metaphysics uses the well-known Smalltalk-80 metamodel,

and the target environment is run unmodified, without middleware or any special

debugging support layer. Reflection on the system is based on the already exist-

ing reflective facilities of both the target and the host system. Metaphysics was

thought for debugging remote processes where the communication to the remote

environment is trusted and fast, like a remote process on the same machine.

Unlike Mercury, Metaphysics does not require a middleware layer because it

connects directly to the target system by making use of its already included meta-

information. Furthermore, in Metaphysics, a model of the debugged application

is not needed in the developer machine, but can be lazily downloaded from the

target system.

Other proposals include using holographic objects to deal with snapshots of

crashed programs [SK13], and virtualization infrastructures for object-oriented

high-level language runtimes [PDFB13, Pol15].

76

Chapter 7

Qualitative Evaluation

This section first discusses how LMRs improve upon state-of-the-art VMs to solve

the problems identified in section 3.2. Then it details how they ease solving each

of the case study problems stated in Chapter 3. Finally, it discusses the trade-offs

LMRs introduce.

7.1 How LMRs Improve Upon the State-of-the-Art

VMs

We argue for the removal of the strict two-layer architecture and the separation

between VM and application. Relying merely on object-oriented techniques for

structuring programs allows us to resolve the problems identified in section 3.2 as

follows.

7.1.1 Limited VM Observability (PG1)

As previously discussed, the strict two-layer architecture purposefully restricts what

can be observed in the VM. Though, for our case studies, it would be beneficial to

more freely monitor not just the application but also the VM’s behavior. With

LMRs being part of the application, there is a more direct connection between

application and VM code, which allows us to observe it in the same way as the

application.

77

Programming systems implemented using LMRs also provide a more direct

causal connections between application and VM code than traditional VMs, which

can also be harnessed for instance to adapt more easily to unanticipated scenarios

and helps us to improve applications in novel ways.

Unified Programming Language

One implicit benefit is that application developers do not necessarily have to learn

and work with a different language. At least in the simplest realization of LMRs,

the language used for the VM is the same as the one used for the application, with

the small differences discussed in section 4.3, which are more a set of conventions

that can be learned on the fly. Like with objects and metaobjects in a system like

Smalltalk, in LMRs the is no differentiation between what is VM code and what is

application code.

Unified Programming Tools

Another benefit is that application programmers do not need to learn a new sets

of tools, because their regular tools for code browsing, profiling, inspecting values,

and debugging, are the same they normally use. However, changing a running

system comes of course with the added risk of making changes that result in crashes.

In our experience, this will result in a more careful experimentation, but does not

discourage it.

7.1.2 Separate VM Development Mode (PG2)

Since LMRs are essentially part of the application, they benefit from the same

programming model as the application code, and support for Live Programming

Environments. This also means there is no separate toolchain or build environment

needed. Furthermore, all VM code is readily available to the developer since the

system is downloaded, and there is no need to compile parts of the VM. Benefiting

from the same tooling also means that code is automatically compiled as the user

accepts changes to VM code in the same way as it is done for application code.

Thus, the application development mode is also the VM development mode.

78

Incrementally Learnability

Application developers using LMRs can browse the code of the different parts

of the VM and inspect the relevant pieces, as they do with the code of the large

application codebase. Similarly, instead of merely imagining how the VM code

behaves at run time, they can debug and observe it. For example, instead of

imagining how or when the compiler triggers recompilation, it is possible to place

a breakpoint in the compiler itself and debug the mechanism as it executes. Thus,

it is possible to run the VM code step by step to understand how the pieces fit

together, when and where it is needed.

7.1.3 Long edit-compile-run feedback loops for VM

Components (PG3)

From the previous outlined benefits also follows that we have the same immediate

feedback for VM code that we have for application code. This instant feedback

reduces the time from ideas to experiments. In LMRs, the VM code is available in

the development environment in exactly the same way as application code. Thus,

there are no additional compilation toolchains for the VM and compiling the

VM does not require any different actions from the ones used for the application.

There is no need for the developer to perform differentiated actions to read and

write the code of the VM. Changes to code are applied instantly, which allows for

scripting-alike actions during VM development with the application running at

the same time.

Unified Programming Interface Between VM and Application

Another benefit of removing the architectural distinction between VM and applica-

tion is that the components that make the VM in an LMR are reusable as libraries

within the application and vice versa. There is no need to devise a lower-level

interface for passing objects to the VM from the application, nor an interface for

using higher-level objects within the VM, since both sides use a unique uniform

representation.

Furthermore, it is possible to perform queries on the state of the system lively.

For example, to know how much time is being spent in GC, there is no need to

79

activate a debug mode in the VM, to export GC statistics into data files, or to parse

it with other tools to finally analyze it. Instead, the developer can directly access

the garbage collector objects, write a few lines of code in the application language

to collect and analyze the live system data and, with a single press of a key inspect

the result of that analysis.

7.2 LMR-based Solution Approaches for the Case

Studies

Based on the case studies described in section 3.1, we now show how Bee/LMR

enables us to solve the problems and overcomes the limitations identified in sec-

tion 3.2.

7.2.1 Garbage-Collection Tuning (GCT)

Our first case study identified performance issues related to garbage collection.

Specifically, opening the application from scratch can take over a minute and a

significant amount of time is spent on allocating objects and garbage collection.

The first step is to understand where exactly time is spent. Since the GC is imple-

mented as a library, it can be identified with the standard profiling tools together

with the application code in context, which is often not possible in the same way

on other VMs, because they try to make GC transparent and unobservable and

tools present it separately.

Because the GC is profiled the same as application code, the developer can see

from a profile how much time was spent on allocating objects, how many garbage

collections were triggered, and which parts of the GC, if any, are an area of concern.

Once an area is identified as a performance bottleneck, we would want to collect

more specific statistics from the GC to better understand why it spends its time

there. Figure 7.1 shows the tools used during the case study, which are already

known to the application programmer.

Since the GC objects are directly available to the programmer, it becomes

possible to directly modify them, while the system is running, to collect statistics

such as the heap sizes over time, object survival and tenuring rates, as well as the

80

Figure 7.1: Debugging a garbage collector with standard application development

tools. On the left, an inspector displays the garbage collection statistics

of the live system, while on the right, a plot illustrates the time taken

by the garbage collection process based on those statistics.

remembered set sizes.

For instance, we can add an instance variable to the class GenGCPass, which is

in charge of collect statistics of the generational GC pass, to store the start time of

each GC pass, and then modify the GC code so that it effectively stores that value

when GC is triggered. In our case study, the developer used the obtained data to

experiment with different Generational GC heap sizes and triggering heuristics

while the system was running where it was possible to modify those things with

the system running and to observe and measure the changes in real time, having

immediate feedback and data to improve the application startup time. With this

tuning, the application startup time was reduced by about 25%.

7.2.2 Recurring Recompilations by the JIT Compiler (JITC)

Similar to our GC tuning case study, profiling our application on Bee/LMR also

helps identifying performance issues with the JIT compiler.

Since with an LMR the JIT compiler is merely another library, new solutions

become possible. Our application developer can use the profiler to navigate to the

JIT compiler’s code, and identify why it takes too much time.

In this case, the developer notices that the VM is repeatedly invalidating and

recompiling code, because for the same class, it sees two different methods: the

81

Listing 7.1: The method NativizationEnvironment » nativeCodeFor:

aBytecodeMethod obtains the native code needed to execute the

method passed as argument. Adding the cache, adds support for

instance-specific methods in the JIT compiler, preventing repeated

recompilations.

NativizationEnvironment >> nativeCodeFor: aBytecodeMethod

cache at: aBytecodeMethod ifPresent: [:cached | ^cached].

nativeCode := methodNativizer nativeCodeFor: aBytecodeMethod.

(self shouldCache: aBytecodeMethod)

ifTrue: [cache at: aBytecodeMethod put: nativeCode].

^result.

original one and the instance method added to an individual object. To provide a

quick solution for the customer that found the problem in production, they try

to modify the VM to enable the JIT compiler to cache the compiled code of both

methods. Instead of triggering a recompilation when seeing an instance-specific

method, they add a lookup in the compiled-code cache and compilation is only

triggered if there is no matching cached entry.

The adapted code in Listing 7.1 implements this simple trick in the JIT compiler.

While this method belongs to “VM code”, it is a simple Smalltalk method and can be

changed as any other method in the live programming environment. Furthermore,

the developer does not need any specific knowledge of how the compilation works.

They only needed to add the check of a dictionary and the caching of the native

code in it. The tools, the language, and the concepts used are well known to the

developer. Figure 7.2 shows a debugger halted at the point of assembling a bytecode.

The liveness of the system allows developers to see the results instantly, without

restarting the system, even coding in the debugger. Thus, this fix could be delivered

to clients without requiring them to restart their application.

To summarize, when developers use an LMR to profile their applications, they

have additional details on the operation of the JIT compiler. If the JIT compiler

causes performance issues, it appears as any other part of the application, making it

possible to identify opportunities for improvement. Thus, LMRs remove accidental

complexity barriers and invite the developers to solve the problems more directly,

82

Figure 7.2: A debugger displaying the template JIT-compiler assembling a jump

with instant feedback without having to restart the system. Those optimizations

can be delivered to clients without even requiring them to perform an application

restart.

7.2.3 SIMD Optimizations (CompO)

The third case study aimed to add support for vectorized operations to speed up the

floating-point arithmetics that are used in the simulation code of the application.

Bee/LMR enables us to harness the compilation tool-chain of the VM for unantici-

pated scenarios. In particular, it is possible to adapt the compiler to optimize the

relevant code for us, which is not normally an option with state-of-the-art VMs.

Since the compiler optimization can be application-specific, it is possible to

implement the bare minimum support for the concrete application instead of

building a generic system that is suitable for a wide range of code structures.

Not only does this give immediate benefits, but it also simplifies the problem

significantly and allows a developer to incrementally support code patterns that

are judged important in the specific application.

Listing 7.2 shows two implementations of element-wise addition of two float

arrays. In this implementation, elements are added one by one. A SIMD-optimized

83

version is shown in Listing 7.3. The programmer has to implement a compiler node

that gets assembled to the desired addps instruction. The assembly can be debugged

with a conventional Smalltalk debugger that includes native code information. As

in the previous case studies, there is no need to perform tasks unrelated with the

problem being solved, such as VM recompilation. The implementation of the

compiler support to generate assembly code for the new node type is done while

the system is running, without restarting, and can be changed and debugged as

much as needed.

7.3 Discussion

By removing the strict separation between applications and VMs, we can benefit

from more insight into the execution by utilizing our standard tools. Changing

the VM and runtime libraries becomes as direct and immediate as changing any

application code. In the following, we will briefly discuss other benefits and

drawbacks we found with this approach.

7.3.1 Additional Benefits

The flexibility LMRs bring provided us with a wider range of options than tradi-

tional VMs when tackling problem scenarios and unanticipated change require-

ments. Since LMRs reduce the length of the feedback cycle for VM changes by

orders of magnitudes, experimentation and exploration takes much fewer time and

effort. As noticed in the section 7.2.2 when caching results of the JIT compiler,

such kind of experimentation, and numerous changes can be done without par-

ticularly deep knowledge of the garbage collector, JIT compiler, native code, or

similar concepts that might be new to application developers. Often it is as simple

as caching some result or collecting some data for getting a better understanding

of what the system is doing.

For example, by looking at high-level native-code characteristics, one can learn

about how the JIT compiler works and how optimization decisions of the JIT

compiler affect the result. This let us observe the decisions made by the JIT

compiler, analyze and modify them. For instance, we can detect methods being

84

Listing 7.2: The method FloatArray » += aFloatArray performs element-wise

addition of the argument into the receiver. It invokes a naive

implementation that performs one-by-one addition. _floatPlus:,

_floatAt: and _floatAt:put: are metamessages that get evaluated at

compile time and generate specialized compiler nodes.

FloatArray >> += aFloatArray

(self checkAdditionArguments: aFloatArray)

ifFalse: [

^self withIndexDo: [:f :idx |

self atValid: idx put: f + aFloatArray]].

self basicPlus: aFloatArray

FloatArray >> basicPlus: aFloatArray

1 to: self size do: [:i | | a b |

a := self _floatAt: i.

b := aFloatArray _floatAt: i.

self at: i put: (a _floatPlus: b)]

Node >> _floatAt: indexNode

^LoadNode

base: self

index: indexNode

type: #Float32

Node >> _floatAt: indexNode put: valueNode

^StoreNode

base: self

index: anONode

value: valueNode

type: #Float32

Node >> _floatPlus: rightNode

^FloatPlusNode left: self right: rightNode.

X64CodeEmitter >> assembleFloatPlus: aFloatPlusNode

left := allocation at: aFloatPlusNode left.

right := allocation at: aFloatPlusNode right.

self assemble: 'addss' with: left with: right

85

Listing 7.3: The SIMD version is quite similar, but it applies the operation to

multiple data on each cycle. The number of iterations is divided by

the amount of parallel additions, the type of stores and loads is

adjusted to make compiler use appropriate SIMD registers and

operand sizes. The assembly for the addition is changed to addps, a

packed single-precision float addition.

FloatArray >> basicSimdPlus: aFloatArray

1 to: self simdSize do: [:i | | a b |

a := self _simdFloatAt: i.

b := aFloatArray _simdFloatAt: i.

self _simdFloatAt: i put: (a _simdFloatPlus: b)]

FloatArray >> simdSize

^self size // self floatsPerSimdRegister

Node >> _simdFloatAt: indexNode

^LoadNode

base: self

index: indexNode

type: #SIMDFloat32

Node >> _simdFloatAt: indexNode put: valueNode

^StoreNode

base: self

index: anONode

value: valueNode

type: #SIMDFloat32

Node >> _simdFloatPlus: rightNode

^SIMDFloatPlusNode left: self right: rightNode

X64CodeEmitter >> assembleSIMDFloatPlus: aSIMDFloatPlusNode

left := allocation at: aSIMDFloatPlusNode left.

right := allocation at: aSIMDFloatPlusNode right.

self assemble: 'addps' with: left with: right

86

inlined or not being inlined. Depending on the context too few or too much

inlining can result in worse performance. Since it is a live system, one can then

tune heuristics and see the results without having to restart the system.

7.3.2 Importance of Liveness in LMRs

From the architectural perspective, it is possible to build runtime system that

remove the separation between VM and application, without supporting liveness.

Those runtime systems will likely also reduce the knowledge gap, improve causal

connection between runtime and code, and enable application developers to better

understand the runtime system.

However, the instant feedback and observability of LMRs also turns the mere

potential of these benefits into serendipitous encounters that will happen, which is

key for the understanding of large codebases. Just because one may have access to

the code, does not mean that one will look at it. In an LMR however, the code

will be right there in the debugger or profiler one is using to diagnose a problem,

and one can instantly experiment with it without any extra action to be taken. We

believe this to be a qualitatively different situation than in classic environments.

7.3.3 Drawbacks and Concerns Associated with LMRs

Removing the distinction between VM and application comes naturally with

concerns about abandoning the benefits of this architecture. We now briefly

discuss these concerns and others such as software safety.

Maintainability and Portability

As previously discussed, the two-layer design is chosen by many VMs on purpose

to ensure a strong separation of VMs and application. With VMs such as the Java

Virtual Machine, this gives applications the opportunity to change between JVMs

being confident that the application will continue to work. With LMRs, this strict

separation and guarantee is not given anymore. However, we would argue that in

some situations this is a trade-off worth making.

Considering that many large applications would use the technique of vendoring

frameworks they rely on into their own codebase, an LMR is essentially the practice

87

of vendoring the runtime library into the application. Vendoring is typically done

to gain more stability and be able to fully control a framework or library. On the

flip side, this comes at the cost of maintaining this fork and upstreaming changes

into the original. Arguably, the same is true for LMRs and as with vendored

frameworks, it gives all the flexibility and cost of doing so. However, one may

always decide not to change anything, which will typically make it relatively simple

to stay current with any changes made upstream.

Safety

When creating a virtual machine (VM) for a programming language, software safety

is a crucial concern. We argue that moving the code between architectural layers

does change the situation only superficially and any concrete threats are specific

to the programming language of the LMR. As such, there is no general answer

and whether an LMR introduces new attack surfaces depends on the language in

question.

For Bee/LMR, the situation is not ideal from the start. As a Smalltalk, there are

many opportunities to attack the system by evaluating arbitrary code at run time

or by using the #become: operation to arbitrarily swap objects with each other.

Languages such as Java and JavaScript typically have mechanisms to restrict what

can be changed.

For instance, Java’s module system is also able to prevent reflective accesses.

JavaScript has the freeze() method that allows it to make objects immutable. Such

mechanisms could in theory be used to provide some form of protection. However,

having a JIT compiler, its assembler accessible, and the ability to access arbitrary

memory in theory allows the execution of arbitrary code and as such would require

careful design to prevent an attacker to gain access to this capability. Type and

capability systems, for instance using mirrors [BU04], could facilitate a suitable

system design.

Stability

From a practical standpoint, developers have flexibility in choosing their preferred

workflow. Changing the systemwhile it is running is risky, as even a minor mistake

88

can cause the system to crash. In Bee/LMR, there are no special crash avoidance

mechanisms than the ones given by the language itself. That includes safe indexing

of arrays and mechanisms such as doesNotUnderstand, which let programmers

catch and fix errors as they show up.

It is possible and common practice to save the image right before applying such

changes. Additionally, if a crash does occur, a remote debugger pops up, allowing

to inspect the frozen image before terminating the process, to aid understanding

the cause of the crash. Alternatively, since Bee/LMR can be edited as code offline,

one can also modify it and then bootstrap it, which allows applying more complex

changes that might not be safe in a running system.

In practice, developers often start with the live workflow and switch to safer

approaches once they found the boundaries of what is possible in a live system.

The same holds for designing the overall system. Often we find ourselves to chose

more conservative design changes, which facilitates live updates and reduces the

risk of stability issues.

7.3.4 Metamodel Dynamicity and System Scalability

Our LMR implementation does not expand on the metaobject protocol to allow

changes such as modifying object layout format on-the-fly. While in principle, one

can treat all objects, or rather the programs memory as bits, and run a script over

them to do such updates, Bee does not provide any special support or API to make

such changes convenient. Small changes like modifying the meaning of a free bit

in object headers may be explored while running the program. Bigger changes, on

the other hand, usually get done by modifying source files and re-bootstrapping

the system.

When considering the scalability of an LMR, one may be concerned about the

support of large object heaps as well as the support for large codebases. Since we

use the G1 GC design [DFHP04], we have not noticed any scalability issues. G1 is

designed for large heaps and to give soft real-time guarantees on garbage collection

pauses.

When it comes to large codebases, the Smalltalk approach of an image-based

system, that contains the code, scales quite naturally. Since code is compiled at run

89

time and development time one method at a time and on-demand, the growing

codebase has not been a notable concern, even with our 1.1 million lines of code

application.

7.3.5 Real-life Usage

Usually, application developers do not try to optimize an LMR’s GC or JIT

directly, but use the richer information obtained from the live system to modify

their application, so that they can make better design decisions within their code

to avoid hitting VM bottlenecks.

Application developers using LMRs count with the tools they use daily in their

LPE to inspect, browse and debug the GC code if they want to. Furthermore, if

they do want to modify components like the JIT and the GC, they can do it with

the system running, with instant feedback.

At development time, even for application developers, it can be handy to try

little changes to the VM, make small improvements and run little experiments,

even if small mistakes might make the system might crash during the development

session. These kinds of experiments can result in changes that, if desired, can then

be submitted to VM experts to evaluate their safety and inclusion upstream.

7.4 Additional case studies

While not part of the core case studies (GCT, JITC, CompO), here we describe

other scenarios where the use of an LMR showed practical benefits in contrast to

the two-layer VM/application design.

7.4.1 Memory Leaks Detection

The presence of a live system allowed for novel uses of the memory management

runtime that are typically not practical with static VMs. The GC can be modified

lively and harnessed in unanticipated ways.

In Bee/LMR, we harnessed the GC to find out memory leaks in an HTTP

request server. Bee includes a generational GC made of an eden space and two

flipping from and to areas where objects go before moving to old area. Because the

90

GC is integrated as a library, it is possible to track live objects in particular spaces,

so finding leaked objects can be done by the following actions:

1. Before handling a request, trigger a generational GC to clean eden space.

2. Disable GC during the handling of the request, so that all objects get allocated

in the eden, making eden grow if necessary during the request.

3. After the request gets handled, trigger a generational GC so that live eden

objects get moved to the from space.

4. Using the GC API, iterate through the objects in the from space adding

them to a weak collection. The contents of this collection is a superset of the

leaked objects. It may still retain objects that were pointed from remembered

set but not really alive.

5. Run a full GC to nil out the entries of the collection that are unreachable

when tracing the full object graph. The contents of this set is now the set of

leaked objects.

The code for performing these actions fits in one method, and was added to

the memory manager and tested with immediate feedback. The API receives a

block closure as argument and returns the newly created objects that survived the

evaluation of that block. The code is shown in Listing 7.4.

As in other situations, this API is mostly useful at development time rather than

at deployment time. In the traditional VM scenario, implementing this would have

required passing through all the barriers detailed in Section 3.2, implementing the

change in the VM, recompiling it restarting the application with the patched VM

and then trying the experiment. In the LMR, the experiment was done without

delays. Actually, the first try saved the results into a standard not-weak collection,

and let us discover that we needed an extra filtering of objects through full GC.

In the traditional VM case, that would have required another recompilation and

restart step that was not needed in the LMR.

91

Listing 7.4: Memory»objectsSurviving: aClosure method evaluates the closure

passed as a parameter and returns the objects that were leaked.

HttpWorker»processRequest: anHttpRequest uses that API to

graphically show the result.

Memory >> objectsSurviving: aClosure

| set finalizable |

set := WeakIdentitySet new.

self collectYoung; disableGC.

aClosure value.

self enableGC; collectYoung.

fromSpace objectsDo: [:o | set add: o].

self collect; collect.

^set

HttpWorker >> processRequest: anHttpRequest

leaked := Smalltalk memory

objectsSurviving: [self doProcessRequest: anHttpRequest].

leaked inspect.

92

Listing 7.5: TestSuite » coverage method clears the code cache, runs a test suite

and finally counts how many of the methods in the system have been

executed by checking how many have been assigned native code.

TestSuite >> coverage

| methods executed |

Smalltalk clearCodeCache.

self run.

methods := CompiledMethod allInstances.

executed := methods count: #hasNativeCode.

^executed / methods size

7.4.2 Implementation of Code Coverage of Tests

Bee contains tools for analyzing code coverage of tests. These tools were based

on instrumentation of compiled methods. While useful for most of the typical

scenarios, the instrumentation approach was too slow to be executed on all the

15000 tests of the system that stress the 1.1 million lines of code of the application.

This problem was solved by accessing JIT-compiler information from the ap-

plication, instead of using instrumentation: As Bee/LMR only executes code by

JIT-compiling methods, if the JIT code cache is cleared before running tests, and

the size of that cache is big enough, then it is possible to determine which methods

have been executed by just checking whether they got added to the code cache.

This information is readily available in the system, and can be collected with a

script like shown in Listing 7.5.

The required change was implemented by application developers in the unit test

library, and allowed them to obtain coverage statistics without paying performance

penalties.

7.4.3 Other Optimizations

At some point our simulation application incorporated a BitField type that sim-

plified working with bit fields. The type allowed extracting bits of an integer as

if it were a C bit field, and also writing bits back. The usage is simple, the client

creates a bit field with something like flags := BitField bits: 4 to: 6 and then

93

Listing 7.6: a BitsAt node contains a pair of left and right sub-nodes. The left one

can be anything, the right one is a constant pointing to a BitField

object. The optimized method accesses the constant and generates

optimized code (a bit and, followed by a bit shift).

BitsAt >> optimized

| bitfield and shift |

bitfield := right value.

self assert: bitfield class == BitField.

and := BitAnd left: left right: bitfield mask.

shift := BitShift left: and right: bitfield shift.

^shift

they can extract and write the bits back with for example flags bitsAt: field and

flags bitsAt: field put: aValue.

After some time, it was discovered that this simple abstraction was causing a

small performance penalty. As the compiler could not prove that bit fields were

immutable, the operations for shifts and ands were using generic code with fallback

cases for non-integer types. Adding general immutability support to the compiler

was out of the scope, but instead of removing the abstraction it was possible to

hand tune Bee/LMR compiler to incorporate an ad-hoc optimization. With this

optimization, when the compiler sees a bitsAt: message sent to a bit-field object, it

assumes it is immutable and generates optimized code for the specific size of the

bit field, removing all performance penalties.

The implementation of this optimization involved two steps: the first one was

adding bitsAt: and bitsAt:put: to a list of special messages in the optimizing

native-code compiler. When seeing such messages, the compiler converts the

MessageSend node to a specialized BitsAt node, a subclass of BinaryMath nodes.

The second step was the optimization itself. For that, the BitsAt node implements

the optimized method, that in turn converts itself into a series of shift and and

nodes, as shown in Listing 7.6.

As the optimization allowed zero-cost bit fields, this abstraction was then incor-

porated back into the rest of the runtime code, simplifying the accesses to bit fields

stored in compiled methods and classes.

94

Chapter 8

Quantitative Evaluation

To assure the viability of our approach, we run a series of performance tests that

provide a lower bound to the performance of a LMR-based systems. Practical

performance is not a problem for LMRs. Bee/LMR is used daily by a team of four

developers and is deployed to run our product in production. It receives two major

releases per year, with monthly minor releases for specific customers.

8.1 Performance Evaluation

The goal of this evaluation is to show that LMRs can reach the performance levels

of traditional VM-based systems. We compare Bee/LMR against the following

systems:

Pharo/Cog Pharo is a Smalltalk dialect which runs on top of OpenSmalltalk VM,

the most widely used Smalltalk VM. We run OpenSmalltalk run in dual

JIT/interpreter mode (Cog) [Mir11]. OpenSmalltalk is written in Slang,

transpiled to C and compiled with a standard C compiler.

Python/CPython The standard Python VM (v3.10.7) which is written in C and

uses an interpreter.

Ruby/MRI The standard Ruby VM (v3.0.4p208), also written in C.

JavaScript/V8 The JavaScript engine behindNode.js (v18.16.0), written inC++,

that includes an interpreter and several optimizing JIT-compiled stages.

95

Python

Ruby

Bee LMR

Pharo

Node.js

1.
0
0

1.
3
3

2.
0
0

3.
0
0

5.
0
0

7.
5
0

10
.0

0

20
.0

0

30
.0

0

50
.0

0

1
00

.0
0

lower is better

Figure 8.1: Bee/LMR benchmark times compared to other dynamic

object-oriented systems.

We use the Are We Fast Yet benchmarks which include 9 micro and 5 macro

benchmarks [MDM16]. They are designed to compare performance across different

language implementations and thus were easy to adapt to Bee.

The benchmarks were run on a machine with a 2.8Ghz 4-core Core i7 7700HQ

with hyper-threading and 16 GB of memory. The operating system is a 64-bit

Ubuntu 22.10. Bee is run through Wine compatibility layer, as it only supports

Windows. All the implementations are 64-bits.

We measure 100 iterations of each benchmark, and in the case of Node.js 3000

to minimize noise from late JIT compilation. For each benchmark, we take the

median of the measurements and report the summary as a standard boxplot in

Figure 8.1. The results are normalized to Node.js, which is the fastest system.

Overall Bee/LMR is slightly slower than Pharo/Cog. This is expected, since the

Cog VM has been optimized for a much longer period than Bee/LMR. For example,

string copying in Bee is done byte-by-byte, checking bounds at each character. Bee

is around one order of magnitude faster than Ruby/MRI and Python/CPython

interpreters. SinceBee/LMR uses a template-based JIT compiler [Ayc03], there is a

lot of room for improving its performance with classic compiler optimizations,

when comparing with Node.js and Pharo.

However, since CPython and MRI are classic bytecode interpreters without

JIT compilation, Bee/LMR outperforms them roughly at the level one would

expect from a template-based compiler. Python is known to be one of the slower

interpreters, which newer versions starting with Python 3.11 aim to fix.1

1https://docs.python.org/3.11/whatsnew/3.11.html#faster-cpython

96

https://docs.python.org/3.11/whatsnew/3.11.html#faster-cpython

8.2 Runtime Implementation Size

We evaluate the size of Bee/LMR by counting the lines of code of different parts

of the system associated with VM components: JIT compiler, GC and built-in

functions. We compare that metric against the other systems to give an idea of the

difference. Bee/LMR is significantly smaller, because it is much more specialized

and does not support the same variety of operating systems, processor architectures,

and usage scenarios.

Subsystem LoC

GC 1, 689
Baseline JIT 3, 329
Optimizing Compiler 5, 567
Intel Assembler 8, 868
Built-ins 2, 604
Total 22, 057

(a) Lines of codes of Bee/LMR

subsystems

VM LoC

V8 (JavaScript) 1, 111, 919 C++

CPython 245, 538 C

MRI (Ruby) 210, 120 C

OpenSmalltalk 124, 741 Smalltalk

Bee/LMR 22, 057 Smalltalk

(b) Lines of codes of different

dynamic, object-oriented virtual

machines, compared to

Bee/LMR

Figure 8.2: Size of the LMR module in lines of code

97

Chapter 9

Conclusions and Future Work

We propose Live Metacircular Runtimes (LMRs), a runtime design that combines

VM implementation and application, replacing the traditional architecture that

separates them into layers. Our approach uses basic object-oriented techniques

instead to ensure for instance encapsulation and to enable changes to the runtime

systems at run time, the same as normal application code.

In this work, we use case studies on tuning the garbage collector, changing the

just-in-time compiler to avoid unnecessary recompilations, and adding support

for vector instructions to the compiler to argue for the benefits of removing the

architectural separation to enable shorted feedback cycles and better understanding

of the runtime system by application developers.

Bee/LMR is our implementation of Bee Smalltalk that runs on top of a live

metacircular runtime, instead of a traditional VM. It is used in production to

run a 1.1 million lines of code application. This LMR-based system has allowed

application developers to incrementally understand VM components as needed, and

even to modify them when required as argued with our case studies. Specifically,

we show that this approach avoids the limited VM observability, the separate

VM development mode, and the long edit-compile-run cycles for the traditional

two-layer architecture.

99

9.1 Future Work

In future work, wewant to explore how to improve performancewithout sacrificing

the ability to change the runtime at run time. While compilers such as Graal

demonstrate that compilers in high-level languages can produce state-of-the-art

performance, our design of the object layout and garbage collector made careful

decisions to preserve a working system at all times. There are similar circular

dependencies in the just-in-time compiler, which means that a change at run time

could break it. This could be mitigated by supporting multiple versions of such

subsystems, where the old working version remains available as a fallback.

We also expect to work in a type system that performs inference, to both give

type feedback to the JIT compiler and also to help to maintain code closures for

the GC.

Other future research directions could explore how to apply this design to other

languages, or build other languages on top of our LMR. The key research question

here is what the appropriate trade-offs are between enabling live programming and

achieving practical performance of such systems, without introducing unwarranted

complexity.

It would also be possible to apply the infrastructure developed for Bee/LMR

to implement a VM for other more static languages such as Java, inside the live

programming environment.

100

Bibliography

[AAB+00] B. Alpern, C. R. Attanasio, J.J. Barton, M. G. Burke, P. Cheng,

J.-D. Choi, A. Cocchi, S.J. Fink, D. Grove, M. Hind, S. F. Hum-

mel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,

V. Sarkar, M. J. Serrano, J.C. Shepherd, S. E. Smith, V.C. Sreedhar,

H. Srinivasan, and J. Whaley. The jalapeño virtual machine. IBM

Systems Journal, 39(1):211–238, 2000.

[AAB+05] B. Alpern, S. Augart, S.M. Blackburn, M. Butrico, A. Cocchi,

P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K.S. McKinley,

M. Mergen, J. E B Moss, T. Ngo, V. Sarkar, and M. Trapp. The

jikes research virtual machine project: Building an open-source

research community. IBM Systems Journal, 44(2):399–417, 2005.

[ASU20] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers,

principles, techniques, and tools.(Rep. with corrections.). Addison-

Wesley Pub. Co., 2020.

[Ayc03] John Aycock. A Brief History of Just-In-Time. ACM Comput.

Surv., 35(2):97–113, June 2003.

[BBZ11] Matthias Braun, Sebastian Buchwald, and Andreas Zwinkau. Firm-

a graph-based intermediate representation. KIT, Fakultät für Infor-

matik, 2011.

[BKL+08] Carl Friedrich Bolz, Adrian Kuhn, Adrian Lienhard, Nicholas D

Matsakis, Oscar Nierstrasz, Lukas Renggli, Armin Rigo, and

Toon Verwaest. Back to the future in one week—implementing

101

a smalltalk vm in pypy. In Workshop on Self-sustaining Systems,

pages 123–139. Springer, 2008.

[BM08] Stephen M Blackburn and Kathryn S McKinley. Immix: a mark-

region garbage collector with space efficiency, fast collection, and

mutator performance. ACM SIGPLAN Notices, 43(6):22–32, 2008.

[BSD+08] Stephen M Blackburn, Sergey I Salishev, Mikhail Danilov, Oleg A

Mokhovikov, Anton A Nashatyrev, Peter A Novodvorsky,

Vadim I Bogdanov, Xiao Feng Li, and Dennis Ushakov. The

moxie jvm experience. cluster computing, 2008.

[BU04] Gilad Bracha and David Ungar. Mirrors: design principles for

meta-level facilities of object-oriented programming languages.

In Proceedings of the 19th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada,

pages 331–344, 2004.

[CBLFD11] Maxime Chevalier-Boisvert, Erick Lavoie, Marc Feeley, and Bruno

Dufour. Bootstrapping a self-hosted research virtual machine

for javascript: An experience report. In Proceedings of the 7th

Symposium on Dynamic Languages, DLS ’11, pages 61–72. ACM,

2011.

[CGM16] Guido Chari, Diego Garbervetsky, and Stefan Marr. Building

Efficient and Highly Run-time Adaptable Virtual Machines. In

Proceedings of the 12th Symposium on Dynamic Languages, DLS’16,

pages 60–71. ACM, 2016.

[CGMD15] Guido Chari, Diego Garbervetsky, Stefan Marr, and Stéphane

Ducasse. Towards fully reflective environments. In 2015 ACM

International Symposium on New Ideas, New Paradigms, and Re-

flections on Programming and Software (Onward!), pages 240–253.

ACM, 2015.

102

[Che70] Chris J Cheney. A nonrecursive list compacting algorithm. Com-

munications of the ACM, 13(11):677–678, 1970.

[Chi95] Shigeru Chiba. AMetaobject Protocol for C++. In Proceedings of

the tenth annual conference on Object-oriented programming systems,

languages, and applications, OOPSLA ’95, pages 285–299. ACM,

1995.

[Cli93] Cliff Click. From quads to graphs: An intermediate representa-

tion’s journey. Technical report, Citeseer, 1993.

[CPL83] Thomas J Conroy and Eduardo Pelegri-Llopart. An assessment of

method-lookup caches for smalltalk-80 implementations. Kra83,

1983.

[CPVF18] Guido Chari, Javier Pimás, Jan Vitek, and Olivier Flückiger. Self-

contained development environments. ACM SIGPLAN Notices,

53(8):76–87, 2018.

[CUL89] C. Chambers, D. Ungar, and E. Lee. An efficient implementation

of self a dynamically-typed object-oriented language based on pro-

totypes. InConference Proceedings onObject-oriented Programming

Systems, Languages and Applications, OOPSLA ’89, pages 49–70.

ACM, 1989.

[DFHP04] David Detlefs, Christine Flood, Steve Heller, and Tony Print-

ezis. Garbage-first garbage collection. In Proceedings of the 4th

international symposium on Memory management, pages 37–48,

2004.

[DS84] L. Peter Deutsch and Allan M. Schiffman. Efficient implementa-

tion of the smalltalk-80 system. In Proceedings of the 11th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Lan-

guages, POPL ’84, pages 297–302. ACM, 1984.

[DWS+13] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian

Wimmer, Doug Simon, and Hanspeter Mössenböck. An interme-

diate representation for speculative optimizations in a dynamic

103

compiler. In Proceedings of the 7th ACM workshop on Virtual

machines and intermediate languages, pages 1–10, 2013.

[FBC+09] Daniel Frampton, Stephen M Blackburn, Perry Cheng, Robin J

Garner, DavidGrove, J Eliot BMoss, and Sergey I Salishev. Demys-

tifying magic: high-level low-level programming. In Proceedings

of the 2009 ACM SIGPLAN/SIGOPS international conference on

Virtual execution environments, pages 81–90. ACM, 2009.

[FM08] David Flanagan and YukihiroMatsumoto. The Ruby Programming

Language: Everything You Need to Know. " O’Reilly Media, Inc.",

2008.

[FQ03] Stephen J Fink and Feng Qian. Design, implementation and

evaluation of adaptive recompilation with on-stack replacement.

In International Symposium on Code Generation and Optimization,

2003. CGO 2003., pages 241–252. IEEE, 2003.

[FY69] Robert R Fenichel and Jerome C Yochelson. A lisp garbage-

collector for virtual-memory computer systems. Communications

of the ACM, 12(11):611–612, 1969.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language

and Its Implementation. Addison-Wesley, 1983.

[HCU91] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing

dynamically-typed object-oriented languages with polymorphic

inline caches. In Proceedings of the European Conference on Object-

Oriented Programming, ECOOP ’91, pages 21–38. Springer-Verlag,

1991.

[HU94] Urs Hölzle and David Ungar. Optimizing dynamically-dispatched

calls with run-time type feedback. In Proceedings of the ACM

SIGPLAN 1994 Conference on Programming Language Design and

Implementation, PLDI ’94, pages 326–336. ACM, 1994.

104

[HU96] Urs Hölzle and David Ungar. Reconciling responsiveness with per-

formance in pure object-oriented languages. ACM Trans. Program.

Lang. Syst., 18(4):355–400, July 1996.

[HWW+15] Christian Humer, Christian Wimmer, Christian Wirth, Andreas

Wöß, and Thomas Würthinger. A domain-specific language for

building self-optimizing ast interpreters. ACM SIGPLAN Notices,

50(3):123–132, 2015.

[IBR+22] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan

Genc, and Jonathan Ragan-Kelley. Exocompilation for Productive

Programming of Hardware Accelerators. In Proceedings of the

43rd ACM SIGPLAN International Conference on Programming

Language Design and Implementation, pages 703–718. ACM, June

2022.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan

Kay. Back to the future: The story of squeak, a practical smalltalk

written in itself. In Proceedings of the 12th ACM SIGPLAN Con-

ference on Object-oriented Programming, Systems, Languages, and

Applications, OOPSLA ’97, pages 318–326. ACM, 1997.

[Int15] Ecma International. ECMAScript 2015 Language Specification.

Ecma International, Geneva, 6th edition, 2015.

[JHM11] Richard Jones, Antony Hosking, and Eliot Moss. The garbage

collection handbook: the art of automatic memory management.

Chapman & Hall/CRC, 2011.

[Jon79] HBM Jonkers. A fast garbage compaction algorithm. Information

Processing Letters, 9(1):26–30, 1979.

[KDRB91] Gregor Kiczales, Jim Des Rivieres, and Daniel Gureasko Bobrow.

The art of the metaobject protocol. MIT, 1991.

[Kic96] Gregor Kiczales. Beyond the Black Box: Open Implementation.

IEEE Software, 13(1):8–11, January 1996.

105

[LKH15] Roland Leißa, Marcel Köster, and Sebastian Hack. A graph-based

higher-order intermediate representation. In 2015 IEEE/ACM

International Symposium on Code Generation and Optimization

(CGO), pages 202–212. IEEE, 2015.

[LYBB14] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley.

The Java virtual machine specification. Pearson Education, 2014.

[Mat08] Bernd Mathiske. The maxine virtual machine and inspector.

In Companion to the 23rd ACM SIGPLAN Conference on Object-

oriented Programming Systems Languages and Applications, OOP-

SLA Companion ’08, pages 739–740. ACM, 2008.

[MDM16] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. Cross-

Language Compiler Benchmarking—Are We Fast Yet? In Proceed-

ings of the 12th Symposium on Dynamic Languages, DLS’16, pages

120–131. ACM, 2016.

[MH13] Dmitri Makarov and Matthias Hauswirth. Jikes rdb: a debug-

ger for the jikes rvm. In Proceedings of the 2013 International

Conference on Principles and Practices of Programming on the Java

Platform: Virtual Machines, Languages, and Tools, PPPJ ’13, pages

169–172. ACM, 2013.

[Mir11] Eliot Miranda. The cog smalltalk virtual machine. In VMIL’11:

Proceedings of the 5th workshop on Virtual machines and intermedi-

ate languages for emerging modularization mechanisms, 2011.

[Mor78] F Lockwood Morris. A time-and space-efficient garbage com-

paction algorithm. Communications of the ACM, 21(8):662–665,

1978.

[MVCTT07] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, and Eric

Tanter. Mirages: Behavioral intercession in a mirror-based architec-

ture. In Proceedings of the 2007 symposium on Dynamic languages,

pages 89–100. ACM, 2007.

106

[OUH+14] Atsushi Ohori, Katsuhiro Ueno, Kazunori Hoshi, Shinji Nozaki,

Takashi Sato, Tasuku Makabe, and Yuki Ito. SML# in Industry:

a Practical ERP System Development. In Proceedings of the 19th

ACM SIGPLAN International Conference on Functional Program-

ming, ICFP’14. ACM, August 2014.

[PBAM17] Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan

Marr. Garbage collection and efficiency in dynamic metacircular

runtimes: an experience report. In Proceedings of the 13th ACM

SIGPLAN International Symposium on on Dynamic Languages,

pages 39–50, 2017.

[PBF+15] Nick Papoulias, Noury Bouraqadi, Luc Fabresse, Stéphane

Ducasse, and Marcus Denker. Mercury: Properties and design

of a remote debugging solution using reflection. The Journal of

Object Technology, 14(2):36, 2015.

[PBR14] Javier Pimás, Javier Burroni, and Gerardo Richarte. Design and

implementation of bee smalltalk runtime. In International Work-

shop on Smalltalk Technologies, IWST, volume 14, page 24, 2014.

[PC19] Javier Pimás and Guido Chari. Powerlang: a vehicle for lively

implementing programming languages. In International Workshop

on Smalltalk Technologies, 2019.

[PDFB13] Guillermo Polito, Stéphane Ducasse, Luc Fabresse, and Noury

Bouraqadi. Virtual smalltalk images: Model and applications. In

21th International Smalltalk Conference-2013, pages 11–26, 2013.

[PG92] Young Gil Park and Benjamin Goldberg. Escape analysis on

lists. In Proceedings of the ACM SIGPLAN 1992 conference on

Programming language design and implementation, pages 116–127,

1992.

[PG07] Fernando Pérez and Brian E. Granger. IPython: A System for

Interactive Scientific Computing. Computing in Science & Engi-

neering, 9(3):21–29, 2007.

107

[Pim18] Javier Pimás. Migrating bee smalltalk to a different instruction set

architecture: An experience report on porting a dynamic metacir-

cular runtime from x86 to amd64. In International Workshop on

Smalltalk Technologies, 2018.

[Pim22] Javier Pimás. Powerlangjs: A quick way to get your smalltalk to

the web? In FASTWorkshop 2022 on Smalltalk Related Technologies,

2022.

[PM17] Javier Pimás and Stefan Marr. Metaphysics: Towards a robust

framework for remotely working with potentially broken objects

and runtimes. In 2nd Workshop on Meta-Programming Techniques

and Reflection, 2017.

[PMG24] Javier Pimás, Stefan Marr, and Diego Garbervetsky. Live objects

all the way down: Removing the barriers between applications

and virtual machines. arXiv preprint arXiv:1909.12795, 2024.

[Pol15] Guillermo Polito. Virtualization Support for Application Runtime

Specialization and Extension. PhD thesis, Universit e des Sciences

et Technologies de Lille, 2015.

[PS99] Massimiliano Poletto and Vivek Sarkar. Linear scan register allo-

cation. ACM Transactions on Programming Languages and Systems

(TOPLAS), 21(5):895–913, 1999.

[RP06] Armin Rigo and Samuele Pedroni. Pypy’s approach to virtual

machine construction. In Companion to the 21st ACM SIGPLAN

Symposium on Object-oriented Programming Systems, Languages,

and Applications, OOPSLA ’06, pages 944–953. ACM, 2006.

[RRL+18] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and

Tobias Pape. Exploratory and Live, Programming and Coding.

The Art, Science, and Engineering of Programming, 3(1):1–33, July

2018.

[SC05] Doug Simon and Cristina Cifuentes. The squawk virtual machine:

Java™ on the bare metal. In Companion to the 20th annual ACM

108

SIGPLAN conference on Object-oriented programming, systems, lan-

guages, and applications, pages 150–151, 2005.

[SK13] Robin Salkeld and Gregor Kiczales. Interacting with dead objects.

ACM SIGPLAN Notices, 48(10):203–216, 2013.

[Smi84] Brian Cantwell Smith. Reflection and Semantics in LISP. In Pro-

ceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Prin-

ciples of Programming Languages, POPL’84, pages 23–35. ACM,

1984.

[SW67] Herbert Schorr and William M Waite. An efficient machine-

independent procedure for garbage collection in various list struc-

tures. Communications of the ACM, 10(8):501–506, 1967.

[SWM14] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck.

Partial escape analysis and scalar replacement for java. In Pro-

ceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization, page 165. ACM, 2014.

[Tan09] Éric Tanter. Reflection and Open Implementations. Technical

report, DCC, University of Chile, Avenida Blanco Encalada 2120,

Santiago, Chile, 2009.

[UBF+84] David Ungar, Ricki Blau, Peter Foley, Dain Samples, and David

Patterson. Architecture of SOAR: Smalltalk on a RISC. In Pro-

ceedings of the 11th Annual International Symposium on Computer

Architecture, ISCA ’84, pages 188–197. Association for Computing

Machinery, 1984.

[Ung83] David M Ungar. Berkeley smalltalk: Who knows where the time

goes? Smalltalk-80: bits of history, words of advice, pages 189–206,

1983.

[Ung84] David Ungar. Generation scavenging: A non-disruptive high

performance storage reclamation algorithm. ACM Sigplan notices,

19(5):157–167, 1984.

109

[Ung86] David M Ungar. The design and evaluation of a high perfor-

mance smalltalk system. Technical report, CALIFORNIA UNIV

BERKELEY GRADUATE DIV, 1986.

[USA05] David Ungar, Adam Spitz, and Alex Ausch. Constructing a

metacircular virtual machine in an exploratory programming en-

vironment. In OOPSLA ’05: Companion to the 20th annual ACM

SIGPLAN conference on Object-oriented programming, systems, lan-

guages, and applications, pages 11–20. ACM, 2005.

[VBG+10] Toon Verwaest, Camillo Bruni, David Gurtner, Adrian Lienhard,

and Oscar Niestrasz. Pinocchio: bringing reflection to life with

first-class interpreters. ACM Sigplan Notices, 45(10):774–789, 2010.

[WF10] Christian Wimmer and Michael Franz. Linear scan register allo-

cation on ssa form. In Proceedings of the 8th annual IEEE/ACM in-

ternational symposium on Code generation and optimization, pages

170–179, 2010.

[WHVDV+13] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter,

Mick Jordan, Laurent Daynès, and Douglas Simon. Maxine: An

approachable virtual machine for, and in, java. ACM Trans. Archit.

Code Optim., 9(4):30:1–30:24, January 2013.

[WSH+19] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jo-

vanovic, Paul Wögerer, Peter B. Kessler, Oleg Pliss, and Thomas

Würthinger. Initialize Once, Start Fast: Application Initialization

at Build Time. Proceedings of the ACM on Programming Languages,

3(OOPSLA):1–29, October 2019.

[WW12] Christian Wimmer and Thomas Würthinger. Truffle: a self-

optimizing runtime system. In Proceedings of the 3rd annual

conference on Systems, programming, and applications: software

for humanity, pages 13–14, 2012.

[WWS+12] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Du-

boscq, Doug Simon, and Christian Wimmer. Self-optimizing

110

ast interpreters. In Proceedings of the 8th Symposium on Dynamic

Languages, pages 73–82, 2012.

[WWW+13a] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas

Stadler, Gilles Duboscq, Christian Humer, Gregor Richards,

Doug Simon, and Mario Wolczko. One VM to Rule Them All.

In Proceedings of the 2013 ACM International Symposium on New

Ideas, New Paradigms, and Reflections on Programming & Software,

Onward!’13, pages 187–204. ACM, 2013.

[WWW+13b] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas

Stadler, Gilles Duboscq, Christian Humer, Gregor Richards,

Doug Simon, and Mario Wolczko. One vm to rule them all.

In Proceedings of the 2013 ACM international symposium on New

ideas, new paradigms, and reflections on programming & software,

pages 187–204. ACM, 2013.

[ZB20] Wenyu Zhao and Stephen M Blackburn. Deconstructing the

garbage-first collector. In Proceedings of the 16th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution

Environments, pages 15–29, 2020.

111

	Introduction
	Problem Statement
	Thesis Statement
	Contribution
	Published Work

	Thesis Outline

	Background
	Dynamic Languages
	Live Programming Environments
	Virtual Machines
	The Architecture of Virtual Machines

	Bee Smalltalk
	Memory management
	Other Characteristics

	Motivation and Case Studies
	Case Studies
	Garbage Collection Tuning (GCT)
	Recurring Recompilations by the JIT Compiler (JITC)
	SIMD Optimizations (CompO)

	Problems with State-of-the-Art VMs
	Limited VM Observability (PG1)
	Separate VM Development Mode (PG2)
	Longer edit-compile-run feedback loops for VM Components (PG3)

	Summary

	Live Metacircular Runtimes
	Bee Smalltalk
	Execution Model
	Virtual CPU Architecture
	Native Code in Compiled Methods
	Interactions Between VM and Applications

	Migration from Split Layers Design to Bee/LMR Modules
	Philosophy

	Customizable Nativizers
	Customizable Send Translation and Semantics
	Invoke Message Linker
	Template-JIT Method Nativizer
	Optimizing Method Nativizer
	Avoiding Recursive Nativizer Invocation

	Implementation of LMR Built-in Functions
	Message Lookup
	Lookup Caching

	Wrapping up the LMR into Bee
	Bootstrapping
	LMR Development Environment

	Related Work
	Self-hosted Virtual Machines
	Designs with Extensible Metaobject Protocols
	Beyond Object-Oriented Virtual Machines
	Designs with Reduced VM and Application Boundaries

	Garbage Collection and Memory Management
	Implementation Challenges
	Garbage Collection of Runtime Objects
	Execution Context Unavailability During Garbage Collection
	Garbage Collection Debugging

	Design Directions
	Two Possible Approaches

	Overall Design of Bee/LMR Garbage Collectors
	Object Heap Layout
	Object Allocation

	Generational Garbage Collector
	Old-Space Garbage Collector
	Compaction Mechanisms

	Related Work

	Metaphysics Framework
	Context
	Uses
	Remote Object Discovery
	Remote Code Execution in the Original Process
	Simulated Local Evaluation of Remote Code

	Design of the Metaphysics Framework
	Base Metaphysics Concepts
	Mirrors
	Subjects, Gates and Execution Semantics

	Related Work

	Qualitative Evaluation
	How LMRs Improve Upon the State-of-the-Art VMs
	Limited VM Observability (PG1)
	Separate VM Development Mode (PG2)
	Long edit-compile-run feedback loops for VM Components (PG3)

	LMR-based Solution Approaches for the Case Studies
	Garbage-Collection Tuning (GCT)
	Recurring Recompilations by the JIT Compiler (JITC)
	SIMD Optimizations (CompO)

	Discussion
	Additional Benefits
	Importance of Liveness in LMRs
	Drawbacks and Concerns Associated with LMRs
	Metamodel Dynamicity and System Scalability
	Real-life Usage

	Additional case studies
	Memory Leaks Detection
	Implementation of Code Coverage of Tests
	Other Optimizations

	Quantitative Evaluation
	Performance Evaluation
	Runtime Implementation Size

	Conclusions and Future Work
	Future Work

