
Memory snapshotting of self-modifying systems

Guido Chari
Universidad de Buenos Aires

charig@gmail.com

Javier Pimás
Universidad Nacional de General

Sarmiento
jpimas@ungs.edu.ar

Gerardo Richarte
Disarmista

gera@corest.com

Gabriela Arévalo
CONICET, Universidad Nacional de Quilmes

garevalo@unq.edu.ar

Stéphane Ducasse
INRIA

stephane.ducasse@inria.fr

Abstract
Self describing (pure reflective) and meta-circular systems
have many advantages, but in some low-level operations,
such as memory snapshotting, self-modification brings some
problems.

The problem of atomic-copy deals with object immutabil-
ity and virtual machine state consistency that should be en-
forced when the same system is used to save itself. Specif-
ically in Smalltalk environments, generating a complete
snapshot of the Smalltalk object memory, using the same
system that has to be persisted is a challenge since the sys-
tem changes itself during the saving process.

In the context of our work, the SqueakNOS environment
(an OS written in Smalltalk) lacks persistency features be-
cause of the complexity of the atomic-copy problem.

In this paper we present a page-based memory man-
ager which can handle native page faults at language level
and then a copy-on-write strategy on top of it. Except low
level hardware features, all the implementation is written at
Smalltalk abstraction level.

Additionally to the advantage of dealing with very low-
level operations using high-level languages, we introduce a
mechanism that reduces memory usage up to 95%, com-
pared to other approaches on SqueakNOS.

Keywords SqueakNos, operating system, snapshotting,
paging, atomicity

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Within object-oriented languages, one of the most relevant
features in Smalltalk environments is the image, which is
the region of memory where all environment objects are
stored. Thus, the image snapshotting consists of generating
an atomic copy of this memory into a file [Gol84, IKM+97,
BDN+09]. When needed, this snapshot can be loaded di-
rectly from the file system, restoring the system to the exact
same state as it was when saving it.

Snapshotting a self-modifying system on top of another
system is an easy task. In standard self-modifying plat-
forms, file writing performed by the operating system primi-
tives. This process helps the implementation of image snap-
shotting on Smalltalk-like environments because it means
that the Smalltalk execution engine1 is paused while the file
is being written by the Operating System. Thus, the objects
that are being serialized to a device are not being modified
at the same time. Initially, this is a very important property
that must be enforced to hold the consistency of the snap-
shot and is valid in standard environments due to the way
they delegate the file copying on the Operating System.

Snapshotting a self-modifying system itself is an interest-
ing problem to be solved. SqueakNOS (Squeak No Oper-
ating System) is an approach to an Operating System written
mostly in Smalltalk [Squ11b], based on Squeak smalltalk
implementation[Squ11a], and its recent fork Pharo. It pro-
motes to “implement the bare minimum as native code (a
mix of assembly and C), and then do everything else at lan-
guage level.” Thus, it provides its own file writing imple-
mentation developed almost completely in Smalltalk. This
novel design decision implies that file writing requires the
execution engine to be running. But then it poses a challenge
for snapshotting the system since it implies that some of its

1 We talk about execution engine to refer to the engine in charge of exe-
cuting instructions, be them bytecodes or native instructions if just-in-time
compiled

Memory snapshotting of self-modifying systems 1 2012/3/3

objects, the ones used during file writing, might be changed
during the process of file writing. This means that the im-
mutability of the objects in memory (since the user asks for
the snapshot until they are actually written to the file) could
not be assured.

Hibernation in standard Operating Systems. Hibernation
is the action of saving the state of an Operating System so
that when the computer is turned on later, it returns to its
original state. In open environments, like Linux, this tech-
nique is known as suspend to disk and corresponds to the
Power Management area [Sws11]. This mechanism serves
two goals. Firstly, it saves the current working environment
for later use and, secondly it opens new paths on improving
system startup times [Kam06]. Conceptually, the problem of
snapshotting and suspending to disk (or to RAM) are very
similar, but in practice they are very different. Power man-
agement techniques interacts deeply with devices, and the
biggest challenge is that all resources and its drivers work
correctly on restarting. ACPI [Acp] standard is the de facto
way of implementing these techniques on nowadays Operat-
ing Systems [Gar07]. But unlike the problem we described,
such a system saves its own memory with very low-level op-
erations like memcpy() that assures that the memory is not
modified during the copy.

Atomicity problems. The atomic-copy problem happens
when snapshotting self-modifying systems, as in the case of
SqueakNOS environment. Other kinds of atomicity prob-
lems happen among many other areas of computer sci-
ence, like transactional operations on databases, transac-
tional memory, semaphore operations on operating systems
and more [SGG08, Tan07]. In this paper, we focus only on
the problem of attaining atomicity for memory snapshotting
in a meta-circular, reflective and self contained environment
like SqueakNOS, which was lacking an image snapshotting
mechanism due to the reasons described previously. Sum-
marizing, image snapshotting in SqueakNOS is a really in-
teresting problem to work on, since it involves tackling a
kind of problem that was not solved yet and also because a
substantial solution will really improve SqueakNOS.

Atomic copying through memory paging. We imple-
mented a paging-based memory manager at Smalltalk level,
with which page protection faults are resolved completely
using high-level language behavior. With this mechanism,
we are able to track every attempt to change a memory page
before it actually happens. Using this new feature, we de-
veloped a copy-on-write algorithm for snapshotting where
all the object memory pages are set as read-only before the
Smalltalk file writing process starts. From that moment, any
attempt to modify a memory page will cause a read-only
violation where we can hook, save its content to a buffer
and then set it again to read-write. Thus, during a snapshot
the system continues working as usual and the file writing
process starts to execute eventually. It iteratively sweeps

through all pages of the object memory, writing them di-
rectly to disk. In the cases where it finds a page that was
modified, it takes the content from the buffer. With this strat-
egy we finally reach the goal of a true (consistent) copy and
a considerable improvement on memory usage of about 95
percent compared to the naive approach of implementing
a complete copy of the memory to a free region using low-
level functions (like memcpy()) inside the object engine. Ad-
ditionally, we managed to describe very low-level behavior
as page fault interruption handling on language level. This
feature is not achieved on any other existing environment.

Thus, the main contributions of the paper are:

• Challenges of memory management in self-described
system,

• A lazy object memory snapshotting algorithm based on
page-protection mechanism.

The structure of the paper is as follows: Section 2 ex-
plains the challenges we faced with on the environment we
worked on. Section 3 provides details about the copy-on-
write like solution we developed for solving the atomic-copy
problem and exposes the results we achieved. Section 4 ana-
lyzes some issues related to the design of our approach. Sec-
tion 5 shows some related work and compare them with our
approach, and finally Section 6 concludes and details some
future work.

2. Challenges for Memory Management in
Reflective Systems

Reflective OSes focus on several key challenges when deal-
ing with memory management. As our approach is based on
SqueakNOS, we analyze in detail the different challenges we
must cope with it.

2.1 The Snapshotting Challenge
We define the Snapshotting Challenge as:

How to persist an exact copy of a memory region of
the system (the object memory [Row01] in our partic-
ular case) at a given point in time, when at the same
time the saving process must modify it to achieve the
desired goal.

Metacircular Operating Systems (the ones written in re-
flective environments) face The Snapshotting Challenge be-
cause they cannot rely on the underlying OS primitives to
pause the execution (and as such the modification of mem-
ory) while the system is saving part of itself. Current general
purpose Operating Systems, such as Windows or Linux, do
support memory saving through hibernation or similar tech-
niques. However, they are not metacircular, rely on very low
level code to solve these problems, and even require special
hardware[VV10].

Memory snapshotting of self-modifying systems 2 2012/3/3

2.2 SqueakNOS: an Example of the Problem
SqueakNOS: a metacircular OS. SqueakNOS implements
Operating Systems features in a pure object-oriented en-
vironment. It deals with hardware resources management,
bringing an interface that application level software uses to
interact with devices. Unlike standard Operating Systems,
this interface is implemented in a highly dynamic way, due
to inherent capabilities of Smalltalk. This means for exam-
ple that all stages of file saving are managed using Smalltalk
code: from the bare ATA [ATA11] drives protocol, through
FAT32 [FAT11] filesystem implementation and up to file
streams wrapping.

Snapshotting challenges in SqueakNOS. The process
of writing data into files is different in SqueakNOS com-
pared to standard environments because it involves execut-
ing Smalltalk methods until the actual level of transferring
the bytes to the device. This is a feature inherent to the
environment, and strongly affects the image snapshotting
mechanism because it means that in SqueakNOS pausing
the execution engine for file writing is not possible. The
behavior for that task is defined at language level, so the
object engine must be executing Smalltalk methods to deal
with file writing. But the execution of Smalltalk methods
implies that at the same moment the object memory is being
copied, its objects might be being mutated by the execution
of the process in charge of the snapshotting (and others too).
Summarizing, neither the atomicity could be assured nor the
consistent behavior of snapshotted images. Figure 1 shows
the difference between the two approaches.

2.3 Zooming on the challenge.
Let’s illustrate with an example what would happen if the
object engine was not paused while snapshotting. Suppose
there is a linked list object which has an instance variable
size that represents the amount of objects it contains, and
first, a reference to the first item. There is an invariant that
size should always be the same than the amount of items
in the list (which could also be calculated by following
the chain starting in first and ending on a nil object). This
invariant should be valid any time, except when an item is
being added or removed, because then the internal state is
being modified. Now let’s suppose that a snapshot is made
while the object engine is adding an object to the list2.
Clearly, the list may be saved in a state where the invariant
is not valid. This process would not represent a problem as
long as the process that is modifying the list is also saved,
in the correct state. So that when the snapshotted image
is loaded and restarts its execution, it finishes adding the
corresponding object and so the invariant is restored. But in
case that snapshotting is not atomic, there is a possible race
condition. The list could be written in an inconsistent state

2 Take into account that this can only happen with the presence of multi-
threading or reentrancy

and after that, the adding process could be scheduled and
run, restoring the invariant in the running image. But then,
when the saving process writes the adding process to disk,
the invariant has already been restored in the running image,
but not in the written one. This leaves an inconsistent list
in the snapshotted image that will not be restored to a valid
state.

The user decides to snapshot, the
image calls a primitive on the
object engine, which delegates file
writing to the operating system

User

Smalltalk image

Object Engine

Operating System

Hardware

Standard environments

User

Smalltalk image

Object Engine

Hardware

SqueakNOS environment

The user decides to snapshot, the
image calls a primitive on the
object engine, which reenters the
image to do the file writing
directly dealing with the hardware

Figure 1. Comparison of standard and metacircular envi-
ronments.

The problem could be mitigated in the case of multi-
threading, by allowing only the execution of the file writing
process, but that solution will not solve the problem in pres-
ence of reentrancy. Due to this, if the execution engine is
not paused during snapshotting, the snapshotter will have to
deal with objects that change while writing to the file. It will
have to determine which objects that changed shall be writ-
ten after being modified and which should be written before.
For the ones that should be written before, a copy of their
original state will need to be kept until they are effectively
written.

Summarizing. The snapshotting problem we faced on
SqueakNOS (it should be the same for any self contained
system) is similar to some known atomicity problems, and
we defined this particular case as the atomic-copy one.

Memory snapshotting of self-modifying systems 3 2012/3/3

Atomicity problems are very well known in databases and
operating systems. In databases, it is important for a trans-
action to be executed completely as if it was done isolated,
or not to be executed at all, in order to avoid inconsistent
data to flow or persist. On the other hand, in operating sys-
tems, semaphore implementations require atomic operations
to guarantee that two processes never enter a critical sec-
tion at the same time. In our context, atomicity is related to
the fact that the snapshot must be an accurate and consis-
tent copy of the object memory at the moment the user asks
for it. To provide the required atomicity, standard Smalltalk
virtual machines pause bytecode execution throughout the
snapshotting process. But that design is not possible nor de-
sired on SqueakNOS. Then, the only possible solution is to
simulate atomicity in a controlled way to leave a consistent
snapshot of the memory in a file.

Solution in a nutshell. Under this assumption, we consid-
ered different approaches. Firstly we considered to modify
the snapshot primitive of the SqueakNOS object engine to
directly support the tracking of objects that change while be-
ing written, but that is a very complex alternative because it
requires extensive modifications to other parts of the object
engine. So we discarded that solution in favour of a simpler
one, that is to wrap around the saving process in a way that
it looks as if the execution engine was stopped during the
process. To fulfill this goal, we decided to develop a paging-
based memory manager almost completely in Smalltalk and
set all the memory pages as read-only when file writing
starts. When a protection fault interrupts the snapshotting
process, we deduce that an object is being modified by it
and we copy that page into a buffer before setting the page
as writeable again. Then, the page is copied to the file from
the buffer instead of from the original object memory as-
suring the immutability. This mechanism is well known as
the copy-on-write strategy. We also developed a naive low-
level approach to provide interesting comparisons, that be-
fore writing to files, mirrors all the object memory with low-
level operations and then writes the mirrored memory space
to the file instead of the object memory.

3. Lazy protection fault-based memory
snapshot

3.1 Snapshot mechanism
To understand the main approach implemented to solve the
atomicity problem exposed, we need to present firstly a com-
plete background of how the process of image snapshotting
is performed in a standard Smalltalk object engine. Actually,
we will explain the Squeak/Pharo standard virtual machine
implementation, because that is the basis object engine used
by SqueakNOS.

The image saving mechanism is implemented in a primi-
tive called primitiveSnapshot (the essential component for
image persistence). In most object engines, when primitives

are running the normal flow of execution gets paused (byte-
code interpretation) and this is a very important property.
This primitive for image snapshotting has two main steps:

1. Prepare the object memory for serialization to assure that
the copy will be consistent for loading it later. This means
roughly to finalize some special objects that need special
considerations after collecting the garbage.

2. Calling a platform specific C function (sqMemory-
FileWrite) that writes all the object memory to a file. The
internals of file writing are implemented by the operating
system.

3.2 SqueakNOS limitations for standard snapshotting
In SqueakNOS, the only way to write a file is by send-
ing a message to the corresponding filesystem object in the
same environment. There is no underlying Operating System
primitive that can be called from C for writing to files. The
file system object communicates with the hard drive con-
troller object, which in turn sends messages to the hard disk
one. This chain ends when the hard disk object configures
the actual hard drive, by issuing generic in/out assembly in-
structions, which are implemented as primitives.

The function sqMemoryFileWrite had been implemented,
on its first versions, as an empty function meaning that any
time that the primitive snapshot was called, the second step
of the process explained above would just fail. This means
that the fault would not be noticed by the user until he
restarts the system and realizes that the image was not saved.

One of the causes of this problem is that in Smalltalk
even the internal threads and the process scheduler are first
class objects. Clearly, a reflective and self described environ-
ment would have lot of this reentrancy problems to surpass,
and this is a very evident one. Thus, the conclusion is that
the limitation of SqueakNOS for this task is inherent to its
definition and this process could not be accomplished com-
pletely atomically in this kind of environments.

3.3 Snapshotting with copy-on-write over memory
page write protection

We introduce a solution to this limitation that keeps track
of which objects are modified while writing the snapshot
to a file. An object tracking process is setup before start-
ing the file writing and works on background. Each time
the file writing process tries to modify an object, the hard-
ware emits an interruption that activates the object tracking
handling process. This process, before allowing the modi-
fication, copies the original state of the complete memory
page into a buffer. Therefore, when writing each object to
disk, it can be taken directly from the object heap, unless it
has been modified. In this latter situation, it would require
to grab the saved copy of the original state from the buffer.
This is almost the optimal theoretical space usage solution to
the atomic-copy problem. There is a trade-off between space
and time optimality. We work with the granularity of mem-

Memory snapshotting of self-modifying systems 4 2012/3/3

ory pages instead of singular objects, so we resign a little on
space efficiency in favour of time and simplicity.3

Fundamentals of paging mechanism. To track which ob-
jects are modified while writing the snapshot to disk, this im-
plementation uses a memory paging mechanism. For better
understanding of the general idea we first provide a brief re-
view of this mechanism. Many processor architectures, such
as x86, implement hardware paging support. In this scenario,
memory is seen as an array of pages, where each one has
a fixed size. This serves many purposes, including virtual
memory and protection. In each access to memory, the pro-
cessor translates the pointed address by means of a page ta-
ble entry. The table entry indicates the physical address of
the virtual address, and also contains a set of flags related to
that page. One of these flags tells if the page can be written.
Figure 2 depicts this mechanism. The hardware catches any
attempt to write a page flagged as write-disabled and gen-
erates a processor interrupt [NL06]. By handling this inter-
rupt, along with the write flag, the paging mechanism can be
used for implementing paging-based copy-on-write of mem-
ory pages.

0
4KB

X

X+4KB

Page Table

OFFSETPAGE

Physical memory

Virtual memory address

Flags Address

Figure 2. Virtual to physical address mapping.

Our snapshotting implementation. The implementation
of copy-on-write snapshotting relies on the idea of copying
the image memory in a lazy way. Following we explain in
detail how this mechanism works

1. The set of pages where the object memory is hosted is
marked as read-only by setting the write bit of each page
as disabled, just after it is prepared for serialization.

2. The interrupt handling routine for write-protection page
faults is set to a strategy that is in charge of copying
the to-be-modified page in a buffer and finally clears the
write flag to allow its modification.

3 It can be argued that if all objects in a single page are modified, there is no
resigned space efficiency, but in practice that is highly unprovable.

3. Execution continues normally and eventually the snap-
shotting process will take its turn and write the object
heap to a file. It should check for every page of memory
to be copied, if it was already modified or not. In case it
was not, the snapshotting process directly takes the page
from memory and writes it to the file. But if the page
had been modified, then its original content was stored in
the pages buffer by the interrupt handling routine, so the
snapshotting process can take it from there and write it to
the file.

This guarantees that the heap will not be modified during
the file write or that, if a page was changed, a copy of its
original state would be kept in a buffer. The main advantage
of this mechanism is that it will only make a copy of the
pages whose objects changed throughout the process, which
are less than all the ones stored in the object heap.

It is worth noting that this behaviour is mostly defined at
language level. The only place where native code is used is
in the initial handling of the interrupt. This is because the
hardware requires to setup the address of a native routine
to call when the interrupt occurs. But this native code does
not resolve the page fault itself. Instead, it only saves the
execution context and reenters the Smalltalk object engine
activating a handling block, which was configured at startup
time by the Smalltalk memory manager.

Figure 3 shows the Smalltalk methods required to han-
dle a page fault, when the page accessed was marked as not
present. In this case, the page directory and table are ac-
cessed to find the corresponding page entry, and the page is
just marked as present. In the case of copy-on-write handling
this method is slightly different. This code can be debugged
with the standard Smalltalk debugger, and even a halt can be
set on the method that is handling a very restrictive opera-
tion such as a processor interruption caused by a page fault.
Thanks to this features, it is posible to dynamically inspect
the objects that represent the memory and processor and also
to change protection-fault handling code on-the-fly.

4. Discussion
4.1 Implementation of a full copy approach
A simple solution. As a first approach we designed a sim-
ple solution which consists on making a full and atomic copy
of the object memory to a free section of memory. The atom-
icity is assured by the use of low-level memory copy func-
tions (memcpy()) inside a primitive. The file writing process
uses this pristine copy instead of the actual object memory,
which will be changing in the mean time. The copy can be
accomplished with a few lines of C code, but is highly in-
efficient in terms of memory usage because it needs a free
space of the same size of the object memory being copied.
This will not pose a problem on images of a few MBs and
systems with many GBs of available memory, but will be an
obstacle when running SqueakNOS on embedded systems

Memory snapshotting of self-modifying systems 5 2012/3/3

Paging >> pageFaultHandler
 ̂ [:args :result | self resolvePageFaultOn: args virtualFaultAddress]

Paging >> resolvePageFaultOn: anAddress
 | pageDirectoryEntry pageTableEntry |
 self halt.
 pageDirectoryEntry := self pageDirectoryEntryFor: anAddress.
 pageDirectoryEntry isPresentAndAllowed ifFalse: [^pageDirectoryEntry setPresentAndSupervisor].
 pageTableEntry := self pageTableEntryFor: anAddress.
 pageTableEntry isPresentAndAllowed ifFalse: [^pageTableEntry setPresentAndSupervisor].
 self error: ’FAIL’

Figure 3. The Smalltalk behavior for handling page faults.

with little physical memory, or with images sized up to many
GBs.

Discovering the contents of system memory. The main
development problem was to find a suitable area of memory
in which the frozen copy of the object heap can be stored,
and after set up the object engine to make the copy in the
right moment. Finding a free chunk of memory big enough
to hold the complete copy of the image required a deep
analysis of the code of the object engine, to determine all
the areas of memory that were already in use. The result of
this analysis is shown on Figure 4, which depicts the areas
occupied by the BIOS, the bootloader, the object engine
and the object heap. The BIOS, bootloader and the object
engine all use a small area at low addresses, as they consist
of compiled assembly and C code. There is also a free zone
for the C call stack, used by the object engine. Lastly, the
bootloader loads the image file as a kernel module at an
arbitrary position, just a bit higher that the one of the kernel4,
and passes its address to the kernel at start time. The amount
of space reserved initially for the object heap is the size
of the image file plus an extra amount that is used when
allocating new objects. This space will not move its base
address, but can grow as much as needed to allow allocating
more objects if the original space is exhausted.

Establishing the position of the copy. Because of the vari-
able size of the object heap, it is very important that it is
located after the object engine and not before. The biggest
block of free memory is the one that goes from the end of
this heap to the end of the available memory. We chose this
block as the one to contain the frozen copy of the memory
to be written. In this block, we chose to write the copy in the
highest possible memory addresses to reduce the chances
that the object heap would run into the buffer if it grows
while writing to the file.

4 It is worth noting that here kernel means the object engine, but for main-
taining the Operating System terminology we called it kernel.

Space to use
for frozen copy

Object Engine

C Stack and free space

Object heap

Free space

0

0xFFFFF 1 MB

0xFFFFFFFF
4 GB - 16 bytes0xFFFFFFF0
4 GB

0

Reserved

BIOS, bootloader and
legacy compatibility

Figure 4. SqueakNOS memory organization.

4.2 Implementation of the paging-based method
Marking the whole object memory as read-only involves
major problems. To understand the reasons, it is important
to remember SqueakNOS philosophy, which implies doing
as much as possible at language level, and then to consider
some kinds of special objects that are stored in the heap.

Marking pages atomically. If the algorithm that marks
pages as read-only were written in Smalltalk, then it would
raise the atomic-copy problem. The sole execution of the
Smalltalk code that marks pages would cause changes in
the object memory, getting the snapshot corrupt. To avoid
this problem, the page-marking phase is done by a primitive,
which does not require execution of Smalltalk code. This
was chosen as a trade-off, as the required code for marking
pages consists of only a few lines. On the other hand, after

Memory snapshotting of self-modifying systems 6 2012/3/3

writing pages to disk, or copying them to the temporary
buffer, pages have to be set as read-write again, and that time
marking is done with Smalltalk code, as there is no atomicity
limitation at that moment.

Recursive protection-faults problem. The implementation
of all this mechanism using Smalltalk objects would mean,
among other things, that protection faults should be resolved
with Smalltalk code. But in this approach, all the process
would need to be carried out with the entire object heap set as
read-only. Doing this raises a similar problem to the atomic-
ity that was described previously: the execution of a method
while memory is read-only -even during the brief process of
handling an interrupt- might cause a change in some object
of the heap, changing the contents of memory even before
the interrupt is handled. Unlike with atomicity, under these
circumstances the execution of methods does not corrupt the
image, but it generates a problem of infinite recursion. The
handling of a protection fault will cause a new protection
fault before it is handled, which raises another one and con-
tinues that way recursively.

The first experiments with this technique for validating
the theory showed that this problem appears and occur fre-
quently. We analyzed it by reverse engineering techniques
because the code to test was very deep inside the execu-
tion engine. We had to analyze heavily the context in which
protection faults occurred, and try to discover which objects
were being written and causing infinite recursion. The goal
was to find out which processes cause the modifications on
the memory. This analysis was really hard, but it led us to a
thorough understanding of the very primitive object engine
inner workings.

Surpassing infinite recursion. We discovered that the first
read-only violations were caused by the process scheduler
while attempting to reschedule the page handling process
as the active one, and afterwards when activating other pro-
cesses to handle hardware interrupts for devices like mouse
and keyboards. The solution to this problem was to copy the
pages where these objects are stored, setting them as read-
write before the first activation of the page handling method.
Then we found out that the execution of primitives caused
other recursive read-only violations, which was related to
an optimization of the look up of the native code. There-
fore, that optimization had to be disabled while a read-only
violation is being handled. Summarizing, the object engine
has knowledge about some special objects as the scheduler,
some semaphores and some optimizations strategies. These
special objects are being modified by the object engine for
doing any task, so the best solution we found was to pre-save
manually these memory pages and leave them as read-write
to avoid the infinite recursion issue.

Native read-only violation handler. After all, we realized
that not all the causes of recursive protection faults could
be managed. The object engine is a very complete, big and

complex software to prove an execution property as this
one. So realizing that there was no warranty (formal proof)
that a recursive read-only violation would not be eventually
raised, we chose to implement a second chance protection
fault handler: if a read-only violation is raised while another
one is already being handled, then the second one is handled
by native C code avoiding the infinite recursion again. This
was considered as a trade-off between the main objective
-implement everything in Smalltalk- and the problems we
would have needed to solve in order to implement it in a pure
way. The native handler only has a reduced functionality,
which is the minimal required to use it as a fallback, and is
not dynamic as changing it requires recompiling the whole
object engine and rebooting the system. For that reason it
is better to keep the Smalltalk one handle most cases, and
resort to the native one only when using Smalltalk is not an
option.

Garbage collection issues. SqueakNOS relies on a gener-
ational garbage collector[Ung84] to free space. During the
execution of the snapshotting code, the execution engine
can fall out of space and interrupt the running process to
collect garbage. This does not cause corruption in the re-
sulting snapshot, because of the hardware-based copy-on-
write mechanism, but can cause other problems. Garbage
collector moves surviving objects, which could cause a mas-
sive amount read-only violations. In the worst case all pages
would be mutated by the collector, making our method very
inefficient memory-wise. But before the snapshot is started
a full collection is done, compacting the heap and cleaning
the new space. The only possible collection that is likely to
happen is a generational one, but that only affects newly cre-
ated objects, which are not written in the snapshot. On the
other hand, execution of Smalltalk interrupt handlers is not
possible during GC because of the limitation of the object
engine, and for that reason read-only violations raised dur-
ing garbage collection are handled with the native handler
mentioned above.

4.3 Validation
We conducted a series of experiments to measure the amount
of read-only violations occurring throughout the entire pro-
cess of writing an image file. Using a standard Pharo im-
age file with SqueakNOS modules loaded, with a size vary-
ing between 30 and 40 MB, the amount of protection faults
handled during the snapshot is close to 100. With pages of
size 4KB, the amount of space used to write the snapshot
is around 400KB. This means that our technique uses less
than 2 percent of the total image size, or that it improves the
complete memory copy approach by 98 percent.

On the other hand, experience showed that movement of
objects caused by garbage collection is not an issue. Full
garbage collection was never raised during file writing in the
tests, and incremental one does not cause big mutations of
the old space, which is the area of memory to be written.

Memory snapshotting of self-modifying systems 7 2012/3/3

The implementation proved to be robust and was added to
SqueakNOS as the default image saving mechanism.

4.4 Other possible approaches to the snapshotting
challenge

There are other possible alternative solutions to the problem
presented in this paper. Nevertheless, these solutions were
discarded mainly because of the complexity of their imple-
mentation. One of them consists of tracking objects modifi-
cation in a different way, and other can be designed to avoid
modifying the heap at all while writing to disk.

Per-object modification tracking. Tracking of modified
objects can be implemented in multiple ways. One alterna-
tive would be to modify the object engine so that it would
make a copy of objects when writing to its instance vari-
ables. This mechanism would be a per object tracking and
would require major modifications to the object engine.

Using a temporary object heap or a second object engine.
Instead of tracking which objects change, the object engine
could be modified to use a temporary object heap during the
writing process. This would involve making the object en-
gine be able to switch its context to the temporary heap, and
also require a complex analysis of which objects need to be
bootstrapped into it. Another similar path would be to have
a second virtual machine entirely loaded in background, to
be used when the first one has to be saved.

5. Related work
The most related technique to the main problem solved in
our work is what is known as suspend-to-disk on standard
Operating Systems. The problem faced with this technique,
is the one of snapshotting a complete Operating System en-
vironment, so it is possible to start the computer on that par-
ticular state later. There isn’t too much formal documenta-
tion on this technique, but Linux documentation exposes it
situated inside what is more generally called Power Manage-
ment. According to the documentation, what is more chal-
lenging in this area is the interaction and compatibility of
power transition states with different kind of heterogeneous
devices[VSSI04]. At first, APM was the mainstream model
for managing the power of devices. Nowadays, ACPI pro-
vides better abstractions so it allows more behavior to be
modelled on software in contrast to BIOS-based interactions
as it is with APM. But although the Operating Systems have
to copy their own memory to disk, it is not a big challenge
since it works in a completely different level of reflective-
ness than SqueakNOS. Essentially, the model of execution
is different, and so executing some special tasks (as a mem-
cpy() operation) does not mean necessarily a modification of
its environment. That is why although the problem is by defi-
nition the same, the obstacles and challenges are completely
different and we didn’t benefit too much on analyzing that
problem.

The design of Operating Systems using high-level pro-
gramming languages is a limited field. Here we mention
some approaches that are close to the main idea behind
SqueakNOS. JNode (Java OS) [JNo11] (Java New Operat-
ing System Design Effort) is a free software project to create
a Java platform operating system. The goal of the project was
to create all the software in Java itself, with the exception of
a microkernel developed on assembly language to boot and
load the system. The JVM compiler (which normally uses
just-in-time compilation) is used to build native binaries out
of the core Java code. Thus, nearly the entire system is writ-
ten in Java. This project focuses on the security, stability and
robustness that the Java environment should provide to the
system [lsa].

JX [JX11] is a Java Operating System that focuses on
the flexibility and robustness of the JVM too. The JX sys-
tem architecture consists of a set of Java components exe-
cuting on the core that is responsible for system initializa-
tion, CPU context switching and low-level domain manage-
ment. The Java code is organized in components which are
loaded into domains, then verified and translated to native
code. The domains are protection units that mainly isolate
objects. Each domain has its own heap and garbage collec-
tor. The domains are presented in a hierarchical way where
the lowest one contains the microkernel [GFWK02]. Same
as JNode project, it does not support virtual memory and the
memory is managed the same way as the JVM does. This
means concretely that both projects carry on a sustantial dif-
ference with SqueakNOS and then that they don’t face with
reflective snapshotting. In addition that programming envi-
ronments have some important differences, Smalltalk is the
only that introduces the concept of an image. In Java based
operating systems, a precompiled program should be taken
by the loader. So, working dynamically in the image, inter-
acting with the hardware and persisting the changes, all in
the same environment is not possible.

House [Hou11] is a small operating system coded almost
entirely in Haskell. It builds on the previous hOp project.
The system includes device drivers, a simple window sys-
tem, a network protocol stack, and a command shell window
in which a.out files can be loaded (via TFTP) and executed
in user-mode. This is the first functional-language operating
system that supports execution of arbitrary user binaries (not
just programs written in the functional language itself). This
project focuses on achieving a monadic interface to inter-
act with devices [HJLT05]. It then exploits functional pro-
gramming attributes to demonstrate interesting properties of
the resulting software and its security. Here, the functional
paradigm is a different way of modelling problems so the
difference with SqueakNOS is conceptual and can not be
directly compared. However, House is the only project that
presents a memory manager implementation that supports
virtual memory. However, it is clear that the difference in

Memory snapshotting of self-modifying systems 8 2012/3/3

paradigm here makes that a comparison on a reflective snap-
shotting mechanism is a completely nonsense task.

In addition to Operating System projects, there is a related
atomicity problem, solved with virtual memory technique,
already explored. A real-time, concurrent copying collec-
tor that use the virtual memory hardware to implement syn-
chronization between the collector and the different mutators
(threads that modify objects) [App04]. This project simu-
lates atomicity when collecting while mutators are modify-
ing objects. SqueakNOS should be an ideal environment to
implement this kind of algorithms.

6. Conclusion
In this paper, we achieve the goal of implementing the object
heap snapshotting with the tools that were already present
and changing as little as possible the SqueakNOS founda-
tions. There is a straight and naive approach that we imple-
mented mainly to contrast with the main solution. This ap-
proach achieves a complete atomic copy of the object heap
in memory for then writing it into a file executing Smalltalk
code, thus, the object engine. It is a solution that is trans-
parent to the user, meaning that we only made a semantic
change on a C function that instead of writing into a file, it
now does a memory copy. This means no significant changes
to the object engine were done, thus also not meaningful
low-level add-ons.

But this naive solution has an important shortcoming of
being very memory consuming. It does not seem to be effi-
cient that for writing n bytes from memory to disk, another
n free bytes are needed on memory to complete the process.
So we proposed another approach. We presented an imple-
mentation that, instead of making a copy of the object heap
in memory, sets the pages of the page table that contains the
object heap as read-only. Then we setup a mechanism, com-
pletely in Smalltalk, to handle every protection fault gener-
ated on that range of pages. This handler makes a copy on
memory of the faulted page before allowing to write on it.
So, the object heap is copied from memory directly with the
only exception that if a copy of the original page is found
in a buffer, that copy is written instead of the original one.
This new mechanism presents improvements of more than
98 percent of memory usage with the tests we have done
compared with the first case. In the worst case, every page
is copied and the result is the same as the other approach,
however, this weird case should be very infrequent and on
very special and bounded cases.

Summarizing, we presented a solution to a very important
milestone of SqueakNOS, which now could be persisted on
its usage. Also we proved the advantage of having low-level
hardware modelled at high-level languages, by introducing
a solution that does heavy use of memory management tech-
niques for a general software problem. Furthermore, we pre-
sented a solution to a new problem that arises with reflec-
tive Operating Systems, we define lot of terminology and

clearly exposed the problems and challenges for this kind of
artifacts. Regarding the results achieved, it is clear that the
algorithm presented would use only a little kilobytes of ex-
tra memory for copying a considerable big object heap in
contrast to a naive and straight solution that needs the same
amount of extra memory as the object heap.

Finally, and although not thought as a central contribu-
tion, this work summarized some of the Squeak / Pharo ob-
ject engine architecture and how SqueakNOS links with it.
We have also shown that high-level programming languages
are useful to work on Operating Systems development. How-
ever, there are some low-level areas that could not be tackled
yet, such as for example processor architecture assemblers to
run anything that needs to interact with devices. These bor-
der cases are isolated by implementing them in primitives.
Beyond these primitives, SqueakNOS shows that Smalltalk
is powerful enough to work on this area. There is few docu-
mentation available about Squeak / Pharo object engine, and
for that reason we had to do an almost complete reverse en-
gineering of it. Specially we had to understand the special
cases where the read-only violations handling could fall into
infinite recursion. We had to research from the most simple
one, as it is the code for snapshotting, to more complex tasks
as garbage collection properties and plugins architecture.

6.1 Future work
There are still areas where SqueakNOS could have exten-
sions and / or improvements.

Regarding image snapshotting, the main goal is to get rid
of files (the implemented filesystem models should serve to
communicate with other systems files) and to have a trans-
parent persistency, similar to the one Gemstone[BOS91] of-
fers. The FAT32 implementation needs some performance
improvements too. Other newer and better filesystems as
Ext2, Ext3 or NTFS should be implemented too. To have
transparent persistence as Gemstone, virtual memory sup-
port is mandatory. The actual version of SqueakNOS has
some support on this, but it is basic, lacking offloading of
pages to hard disk.

Another idea that would solve the snapshotting persis-
tence problem and we had not explored, is to have two ac-
tors, or the same, two object engines. That means that one of
them could be the responsible for executing the user byte-
codes and the other should be the chosen to execute all
control or administrative tasks, as snapshotting. This should
have the result of an atomic copy with not even one byte
of extra memory. But, on the other hand, it would require a
fixed amount of memory for the actor binary code and sev-
eral changes to the original object engine for synchroniza-
tion mechanisms.

References
[Acp] Acpi. The ACPI specification.

Memory snapshotting of self-modifying systems 9 2012/3/3

[App04] Andrew W. Appel. Real-time concurrent collection on
stock multiprocessors. SIGPLAN Not., 39:205–216,
April 2004.

[ATA11] Ata, 2011. http://www.t13.org.

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz,
Damien Pollet, Damien Cassou, and Marcus Denker.
Pharo by Example. Square Bracket Associates, 2009.

[BOS91] Paul Butterworth, Allen Otis, and Jacob Stein. The
gemstone object database management system. Com-
mun. ACM, 34:64–77, October 1991.

[FAT11] ”microsoft efi fat32 file system specification”, 2011.
http://www.microsoft.com/whdc/system/platform/
firmware/fatgen.mspx.

[Gar07] Matthew Garrett. How linux suspend
and resume works in the acpi age. Blog
http://www.advogato.org/article/913.html, 2007.

[GFWK02] Michael Golm, Meik Felser, Christian Wawersich, and
Jürgen Kleinöder. The jx operating system. In Pro-
ceedings of the General Track of the annual confer-
ence on USENIX Annual Technical Conference, pages
45–58, Berkeley, CA, USA, 2002. USENIX Associa-
tion.

[Gol84] Adele Goldberg. Smalltalk 80: the Interactive Pro-
gramming Environment. Addison Wesley, Reading,
Mass., 1984.

[HJLT05] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and
Andrew Tolmach. A principled approach to operat-
ing system construction in haskell. SIGPLAN Not.,
40:116–128, September 2005.

[Hou11] House: Haskell user’s operating system and environ-
ment, 2011. http://programatica.cs.pdx.edu/House/.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wal-
lace, and Alan Kay. Back to the future: The story
of Squeak, a practical Smalltalk written in itself. In
Proceedings of the 12th ACM SIGPLAN conference
on Object-oriented programming, systems, languages,
and applications (OOPSLA’97), pages 318–326. ACM
Press, November 1997.

[JNo11] Jnode: a new java operating system, 2011.
http://jnode.sourceforge.net/index.html.

[JX11] Jx: The fast and flexible java os, 2011.
http://www.jxos.org/.

[Kam06] Hiroki Kaminaga. Improving linux startup time using
software resume (and other techniques). In Proceed-
ings of the Linux Symposium Volume II, 2006.

[lsa] Jnode creator blog. http://lsantha.blogspot.com/.

[NL06] Linda Null and Julia Lobur. The Essentials of Com-
puter Organization And Architecture. Jones and
Bartlett Publishers, Inc., USA, 2006.

[Row01] Tim Rowledge. A Tour of the Squeak Object Engine.
In M. Guzdial and K. Rose, editors, Squeak: Open
Personal Computing and Multimedia. Prentice Hall,
2001.

[SGG08] Abraham Silberschatz, Peter Baer Galvin, and Greg
Gagne. Operating System Concepts. Wiley Publishing,
2008.

[Squ11a] Squeak, 2011. http://www.squeak.org.

[Squ11b] Squeaknos, 2011. http://www.squeak.org/squeak/1762.

[Sws11] Swsusp, 2011. http://www.mjmwired.net/kernel/Documentation/power/swsusp.txt.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems.
Prentice Hall Press, Upper Saddle River, NJ, USA,
2007.

[Ung84] David Ungar. Generation scavenging: A non-
disruptive high performance storage reclamation algo-
rithm. SIGSOFT Softw. Eng. Notes, 9:157–167, April
1984.

[VSSI04] Srivatsa Vaddagiri, Anand K. Santhanam, Vijay
Sukthankar, and Murali Iyer. Power manage-
ment in linux-based systems. Linux Journal.
http://www.linuxjournal.com/article/6699?page=0,0,
March, 2004.

[VV10] Mudit Vats and Ishu Verma. Linux power manage-
ment, iegd considerations. Technical report, Intel Cor-
poration, March, 2010.

Memory snapshotting of self-modifying systems 10 2012/3/3

