
Powerlang: a Vehicle for Lively Implementing
Programming Languages

Javier Pimás
Aucerna

Buenos Aires, Argentina
jpimas@aucerna.com

Guido Chari
Czech Technical University

Prague, Czechia
gchari@dc.uba.ar

Abstract
Developing a programming language from scratch, with a
stable and yet efficient runtime environment could be con-
sidered a titanic task. To mitigate this situation, and promote
the early emergence of new languages, two main alternatives
have been proposed: adopt an established virtual machine
or exploit meta-compilation frameworks. In addition, micro
VMs have been proposed as a foundation for developing VMs
on top of a thin layer of abstraction similar to the micro ker-
nel concept proposed for operating systems. Each of these
approaches represents a compromise solving the tensions
between flexibility, correctness, efficiency, and effort when
designing a language runtime. Accordingly, each approach
exposes its benefits while still suffers from limitations.
The Bee development team has been developing a com-

plete Smalltalk system for more than a decade. During the
journey, we implemented several artifacts needed to build a
virtual machine: parsers, compilers, assemblers, bootstrap-
ping utilities, (native code) debuggers, remote execution pro-
tocols, simulation tools, and garbage collection algorithms,
among others. After weighting all the different paths fol-
lowed during these years, in this position paper we advocate
for a novel approach for building language runtimes. Con-
cretely, we envision Powerlang, a framework that would
enable to design, debug, inspect, compile, optimize, and test
new programming languages, with a moderate effort and
significant versatility. Powerlang represents a novel point in
the design space of this kind of solutions. Finally, Powerlang
is developed using a live environment like Smalltalk. We also
elaborate on why this is a excellent match to host such a
framework.

Keywords programming language implementation, virtual
machines, live environments

1 Introduction
Virtual machines are a widespread approach for implement-
ing programming languages. Beyond executing language
statements, VMs usually provide desired features such as
(adaptive) optimizations, security enforcements, portability,
and automatic memory management, among many others.
Each of these functionalities is usually hard to implement

IWST’19, August 27–29, 2019, Cologne, Germany
2019.

in isolation, and the complexity is amplified in VMs as a
consequence of their interleavings. Accordingly, building
full-fledge VMs is usually a matter of expert teams of sys-
tem programmers. It still usually takes them several years to
reach a stable and practical artifact.
Unsurprisingly, whenever a new programming language

emerges, its runtime development becomes a stone in the
shoe. There exists three main alternatives to alleviate this sit-
uation, when considering VMs. The option that demands less
effort is to reuse an established VM such as Java HotSpot [3].
Scala [4] and Kotlin are two mainstream languages that suc-
cessfully compile to Java bytecodes. However, compiling to
the JVM means you must use its garbage collector, threading
model, etc. In addition, a semanticmismatch has already been
observed when compiling arbitrary languages to a bytecode
that was originally conceived to implement one particular
family of language [2, 6].
On a more versatile side of the spectrum Wang et al. [7]

proposes micro VMs, an abstraction over the low-level sub-
strate most VMs should workaround: hardware, memory,
and concurrency. Micro VMs are, thus, a thin layer providing
minimal key services for code execution, memory manage-
ment, and threading. On one hand, pursuing minimality
makes the approach flexible enough to be suitable for a wide
range of new languages. On the other hand, language imple-
menters still need to cope with many low-level tasks such as
implementing optimizations or a concrete garbage collector.
It still remains to be proved whether using micro VMs it
would be possible to build a rich variety of modules that
could be reused by other language runtimes.
In between those approaches appears the Graal VM [8]

and PyPy [1]. These meta-compilation frameworks request
to be fed with an interpreter describing the guest language
semantics. As a result, they generate a runtime including an
efficient JIT compiler honoring the language semantics and a
garbage collector. They have been proven useful for several
different programming languages such as, Ruby, Smalltalk, R,
and Racket, among many others. However, meta compilation
approaches still rely on a concrete host VM. Thus, to imple-
ment features that the VM does not support the alternatives
are to build abstractions that usually sacrifice performance,
or resign support for those features. In addition, to reach
practical performance, the approaches usually suffer from
long warming-up times.

1



IWST’19, August 27–29, 2019, Cologne, Germany Javier Pimás and Guido Chari

Approach Base Perf Flexibility Ease/Liveness
(a) Other VMs ⋆⋆⋆⋆ ⋆ ⋆⋆
(b) Meta VMs ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
(c) Micro VMs ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆
(d) Scratch ⋆ ⋆⋆⋆⋆⋆ ⋆
(e) Powerlang ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆

Figure 1. Properties of the different approaches.

Finally, to reach practical peak-performance, developers
must become experts on the respective DSL they provide,
which is usually not trivial.

Based on the expierence we gathered developing Bee [5],
a dynamic meta-circular runtime for Smalltalk, we propose
to explore a novel point on the design space of VM devel-
opment frameworks. In contrast to other approaches, we
highlight the relevancy of interactive and extensive tool-
ing for building, maintaining, and evolving programming
language runtimes. We dubbed the resulting idea Power-
lang. It consists of a top-down approach, abstracting most
of the concrete tools and algorithms we developed during
our long journey, to make them applicable to build arbitrary
languages.
Figure 1 illustrates Powerlang’s goal by representing dif-

ferent characteristics compared to other language imple-
mentation approaches. Targeting established VM bytecodes
(a) provides a good performance, but imposes constraints
and a lack of live tools. Metacompilation frameworks (b)
increase flexibility and provide interesting performance with
few development efforts. Micro VMs (c) and “from scratch”
implementations (d) are even more flexible, but require much
more involvement from implementers. Powerlang (e) aims
to offer as much flexibility as the Micro VMs provide, while
still reducing the load and the complexity put on the pro-
grammer’s back as much as possible.
In the remaining of the paper we elaborate on the main

ideas behind Powerlang, describe a subset of the modules we
propose to include in a first iteration, and we develop on why
we posit that Smalltalk is a perfect match for implementing
a flexible language implementation framework.

2 Proposal
In the light of the current state of language implementation
frameworks, we propose an alternative idea we conceive as
Powerlang. 1 Our approach focuses on a live and interactive
experience for language developers, and thus, we focus our
attention on tooling, and advocate for Smalltalk as the host
language. Below we describe a set of concepts (and tools)
that, in our vision, will be the cornerstones of Powerlang:
bootstrapping, debugging, and optimizing.

1An early first iteration of Powerlang can be found in https://github.
com/melkyades/powerlang

2.1 Bootstrapping
Bootstrapping is the procedure that allows to execute a lan-
guage from the first time until it is self sustainable. For ex-
ample, a Smalltalk system needs a heap of objects with a
concrete set of classes and methods in order to be able to
run. The construction of such a heap can be done from a set
of definitions. After the bootstrap has been done and the lan-
guage is already self-sustainable, it becomes possible to take
an existing heap and clone it to generate new versions of the
image. But a principled approach to create new heaps from
scratch simplifies different tasks that language implementers
may face during a language lifetime:

• Modifications to the layout of entities in memory.
• Bit-by-bit image reproducibility.
• Deploying minimal language versions.

We claim that a programming language implementation
environment should not only ease the creation and inspec-
tion of a base heap but also aid the bootstrapped language to
load one or many of them into memory. But, bootstrapping
a heap is prone to low-level bugs hard to track. Therefore,
a language implementer should be equipped with tools to
inspect the output and verify its correctness. Figure 2 shows
an early prototype of such inspector in Powerlang.

2.2 Compiling, Simulating and Debugging
We believe that designing a complete language can be best
accomplished as an iterative process. Language designers
should be able to test features incrementally, being able to
compile and even simulate execution after designing each
building block. Even if the language is not yet complete,
nor fully functional. Debugging of the statements of the
language should be possible since the initial stages. This
means that debuggers should be able to adapt to different
execution mechanisms: at early stages the programs could
be simulated or interpreted, and later be run on JIT –or
AOT– based runtimes. The debugger should be able to switch
between a transparent high-level view of execution and a
low-level view of the machine code.

In our initial prototype, we designed an intermediate rep-
resentation based on Smalltalk expressions, analogous to
Lisp S-expressions2. It consists of a tree of expressions simi-
lar to a low-level abstract syntax tree, apt to be traversed for
simulation and JIT-compilation. We expect this design to be
flexible enough for implementing a wide range of languages.
A debugger for a language developed using Powerlang

could look like the one shown in Figure 3. In the example,
a Smalltalk snippet is being debugged, accompanied by a
matching section of assembly, which could be used to debug
a JIT compiler. A similar variation could be used to debug a
simulated execution, without native code, or even without
a completely working language, just a reduced set of meth-
ods. The elements required for implementing such debugger

2Except for the lack of homoiconicity
2

https://github.com/melkyades/powerlang
https://github.com/melkyades/powerlang


IWST’19, August 27–29, 2019, Cologne, Germany

Figure 2. An inspector showing the contents of a boot-
strapped heap, including the offsets and labels of objects.
Other views could be added to improve visualization and to
allow interactivity.

could be obtained directly from the framework, as it would
integrate all components: compiler, native-code generator
and debugger or simulator.

2.3 Interaction with Foreign World
Communication between the language and the outside world
(through foreign-function and application binary interfaces)
is, usually, a source of complexity for language implementers.
We consider that an implementation environment must aid
language designers in this task by providing reusable com-
ponents that simplify the generation of such interfaces. For
example the compiler provided by Powerlang should have
an API for calling external functions, which the language de-
signers could directly use instead of implementing their own.
On one hand it could help the programmers use external
libraries within the new language, by facilitating parsing of
native debug information formats such as ELF and PE, and C
header files. On the other hand Powerlang, should also make
it simple for programmers to export those same formats to
allow the new language be used within other languages.

2.4 Optimizing
Obtaining the best performance for a programming lan-
guage is hard. It usually requires implementing JIT- and
AOT-compilers, with interpretation, baseline and optimizing
stages, using different intermediate representations, complex
algorithms for inlining, instruction selection, register allo-
cation and assembly emission. Garbage collection and mul-
tiprocess/multithread synchronization primitives are also
typical requirements.
Currently, there is no single VM that can tackle all opti-

mization dimensions at the same time. Some VMs optimize
for performance, but are big. Others optimize for reducing
runtime size, but are slower. Others optimize for dynamicity,
allowing more changes at runtime. Others prefer implemen-
tation simplicity for security. Each VM framework might
require usage of their own set of tools. The programming
language design IDE should not stand in the middle. Instead,
it should provide ways to plug the initial language imple-
mentation to the different VM frameworks, exploiting most
benefits of each side.

2.5 Safety
Security is an important aspect of most modern program-
ming languages. It involves different dimensions: programs
written in the new language should provide abstractions to
diminish the amount of programming errors to the minimum
possible; the language itself should aim to be sound regard-
ing to things like its type system or synchronization prim-
itives; the execution environment implementation should
be reliable, both to the programmer and to the user of the
programs written in the language, allowing to compile and
run complex programs according to their specification, with-
out comprising the security of the users of the program. A
language implementation framework should provide tools
to verify properties of the language itself, or to assure the
quality of the runtime environment.

3 Related Work
We already revisited the most relevant works, related to
our vision, in the introduction. We briefly remark below the
main differences we anticipate between these works and
our approach. In contrast to translating a language to an
established VM or, developing a simple interpreter within a
meta-compilation framework, we advocate, first, that Pow-
erlang would be a much more flexible option. We provide a
whole live development environment specifically targeted
to design programming languages. Java and Python, host
languages of Graal and PyPy respectively, lack the live de-
velopment experience that Smalltalk grants.

The Micro VM approach consists mainly of a specification
of a minimal layer needed to build VMs. From this perspec-
tive, the approach is analogous to that of micro kernels for
operating systems. The specification can be implemented

3



IWST’19, August 27–29, 2019, Cologne, Germany Javier Pimás and Guido Chari

Figure 3. A mock-up of a debugger for Smalltalk using Powerlang. The heap could be running in another process or simulated
in an array. The debugger’s layout should be adaptable to display the most relevant information of each guest language.

in several different ways. In top of those implementations
clients could build different languages tools. Accordingly, the
approach follows a bottom-up strategy, leaving to eventual
clients the burden of creating the proper abstractions in top
of the kernel. In contrast, we propose to follow a top-down
approach, by abstracting a whole set of tools, and eventually
developing new ones. We focus on live tools to provide an
interactive way of developing language runtimes with con-
tinuous feedback and on-the-fly adaptations. This way, the
effort of clients should be considerably reduced.

4 Final Remarks
We have presented our vision on Powerlang, a live frame-
work aimed to help developers design and implement arbi-
trary programming languages, without resigning flexibility
nor efficiency. As a distinctive characteristic, Powerlang was
conceived to provide language developers with a live devel-
opment experience. We envision that language developers
would be able to lively debug andmodify, on-the-fly, even the
lower-level components of the runtime for their languages.
We already validated several of these ideas while imple-

menting Bee. At this stage we are abstracting a framework
based on all the tools we developed during the journey. It still
needs to be explored if the ideas apply in general. Our goals
for the (near) future are mainly focused on three different
concrete directions. First, finish an iteration of our abstrac-
tion process to start experimenting building new languages
on top of Powerlang. We expect this process to feed us with
sufficient feedback for slowly reaching an stable set of tools
and APIs. A second interesting research path to explore is
the relation between Powerlang and Micro VMs. Namely, is
it possible to conceive Powerlang as a set of modules that
could be implemented on top of a Micro VM specification or
essential incompatibilities would raise in the attempt?

References
[1] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin

Rigo. 2009. Tracing the Meta-level: PyPy’s Tracing JIT Compiler. In
Proceedings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems
(ICOOOLPS). ACM, 18–25. https://doi.org/10.1145/1565824.1565827

[2] Jose Castanos, David Edelsohn, Kazuaki Ishizaki, Priya Nagpurkar,
Toshio Nakatani, Takeshi Ogasawara, and Peng Wu. 2012. On the
Benefits and Pitfalls of Extending a Statically Typed Language JIT
Compiler for Dynamic Scripting Languages. In Proceedings of the
ACM International Conference on Object Oriented Programming Sys-
tems Languages and Applications (OOPSLA). ACM, 195–212. https:
//doi.org/10.1145/2384616.2384631

[3] Open JDK. 2017. Open JDK. http://openjdk.java.net/
[4] Martin Odersky, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz,

Erik Stenman, Matthias Zenger, and et al. 2004. An overview of the Scala
programming language. Technical Report.

[5] Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr.
2017. Garbage Collection and Efficiency in Dynamic Metacircular
Runtimes. In Proceedings of the 13th ACM SIGPLAN International Sym-
posium on Dynamic Languages (DLS’17). ACM, 12. https://doi.org/10.
1145/3133841.3133845

[6] Michiaki Tatsubori, Akihiko Tozawa, Toyotaro Suzumura, Scott Trent,
and Tamiya Onodera. 2010. Evaluation of a Just-in-time Compiler
Retrofitted for PHP. In Proceedings of the 6th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE). ACM,
121–132. https://doi.org/10.1145/1735997.1736015

[7] Kunshan Wang, Yi Lin, Stephen M. Blackburn, Michael Norrish, and
Antony L. Hosking. 2015. Draining the Swamp: Micro Virtual Ma-
chines as Solid Foundation for Language Development. In 1st Summit
on Advances in Programming Languages (SNAPL 2015) (Leibniz Inter-
national Proceedings in Informatics (LIPIcs)), Vol. 32. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 321–336. https://doi.org/10.4230/
LIPIcs.SNAPL.2015.321

[8] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and
Matthias Grimmer. 2017. Practical Partial Evaluation for High-
performance Dynamic Language Runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). ACM, 662–676. https://doi.org/10.1145/3062341.
3062381

4

https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/2384616.2384631
https://doi.org/10.1145/2384616.2384631
http://openjdk.java.net/
https://doi.org/10.1145/3133841.3133845
https://doi.org/10.1145/3133841.3133845
https://doi.org/10.1145/1735997.1736015
https://doi.org/10.4230/LIPIcs.SNAPL.2015.321
https://doi.org/10.4230/LIPIcs.SNAPL.2015.321
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381

	Abstract
	1 Introduction
	2 Proposal
	2.1 Bootstrapping
	2.2 Compiling, Simulating and Debugging
	2.3 Interaction with Foreign World
	2.4 Optimizing
	2.5 Safety

	3 Related Work
	4 Final Remarks
	References

