R =T - T S B e

o

11

Migrating Bee Smalltalk to a Different Instruction Set
Architecture

An Experience Report on Porting a Dynamic Metacircular Runtime from x86 to

AMDo64

Javier Pimas
Palantir Solutions SRL
Buenos Aires, Argentina
jpimas@palantirsolutions.com

Abstract

We report our experience in porting Bee Smalltalk Dynamic
Metacircular Runtime (DMR) from the 32-bit Intel-x86 in-
struction set architecture (ISA) to AMD64 as a first step to
move forward towards a multi-platform Bee Smalltalk.

This port required subtle changes in most areas present
in typical Virtual Machines (VMs): low-level object shape,
JIT-compiler, garbage collector, primitives and the foreign-
function interface. We present a comprehensive analysis of
the migration difficulties, and the key implementation and
design decisions taken during our work in the context of Bee,
which is implemented in terms of a Smalltalk DMR, in con-
trast to VMs written in languages like C/C++. Additionally,
we depict the image-level mechanisms we deviced in order to
support the transition between 32 and 64-bit images, which
can also be applied to traditional-VM based Smalltalks.

Keywords runtime, virtual machine, processor architec-
ture, porting

1 Introduction

Bee [8] is an implementation of Smalltalk that runs without
what is usually known as a VM. Instead, Bee is supported by
a dynamic metacircular runtime library written in Smalltalk,
which provides all the mechanisms that would usually be
implemented by the VM: JIT-compiler, memory management,
primitives and its foreign-function interface. Bee DMR is
bootstrapped from a derivative of Digitalk Smalltalk running
on top of a host VM. The first iteration of Bee was able to run
on 32-bit Intel x86 Windows systems, and this paper presents
our experience in porting it to 64-bit AMD64' Windows.
To Bee’s development team, there were two main reasons
for migrating from 32 to 64 bits: compatibility with 64-bit
applications and the possibility of using more memory.

lalso known as x86-64 or, more succinctly, x64

IWST’18, September 10-14, 2018, Cagliary, Italy
2018.

In this experience report we

e Analyze which parts of Bee Smalltalk, as an archetype
of Dynamic Metacircular Runtimes (DMRs), are depen-
dent or independent on the processor architecture.

e Provide the details that let Bee Smalltalk components
which depend on the processor architecture vary ac-
cordingly.

e Present an iterative migration approach that was suc-
cessfully applied to cross compile it to another proces-
sor architecture, AMD64.

The process of porting from 32 to 64 bits involved solving
multiple issues. We give a brief summary of them now:

Object format. The layout of objects in memory in 64 bits
does not need to be the same than the one in 32 bits.
Our decisions regarding object format are explained
in sections 4.1 and 4.5.

Bootstrapping. To create a 64-bit system, it is necessary
to generate a 64-bit image, packaged in a 64-bit exe-
cutable. We detail these issues in sections 4.2 and 4.3.

Native-code generation. Besides objects, a Smalltalk im-
age contains code. In particular, Bee kernel image con-
tains native code. In order to create that native code,
it was required to create an AMD64 assembler, and
to plug it to the Smalltalk-to-native compilers. Those
issues are addressed in sections 4.6 and 4.7.

Integer representation. The size of the word in the system
affects how big the small integers can be, and required
adapting code, as shown in section 4.8.

Foreign-function interface. The differences in 64-bit Win-
dows calling-convention design affected the way Small-
talk code communicates with external code. It required
changing how external functions are called from Small-
talk and how Bee Smalltalk handle external callbacks
from C code. This is detailed in sections 4.10 and 4.11.

Chasing platform-dependent code. A part of the migra-
tion work is chasing the remaining places where the
code is dependent on the processor architecture. For
example, this includes code that in traditional VMs is
implemented as primitives and in the garbage collector.
We describe this in sections 4.9, 4.12 and 5.

5

IS

57
58
59
60
61
62
63
64
65
66
67
68
69
70

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

IWST’18, September 10-14, 2018, Cagliary, Italy

2 Bee Dynamic Metacircular Runtime
Overview

Bee DMR is a Smalltalk implementation that runs without a
traditional VM. It implements a just-in-time and ahead-of-
time compiler, not supported by a host VM. It is the Small-
talk runtime itself that supports the Smalltalk environment,
in a similar way than the Smalltalk metamodel is used to
describe itself. This self-hosted runtime implementation ap-
proach is not new, as it has been previously explored in
proyects like Klein [10], a Self implementation, and also in
Jalapeno/Jikes [1], and Maxine [12] java runtimes, just to
cite some examples.

The main difference between Bee runtime implementation
and a traditional Smalltalk VM is that Bee has no primitives.
Instead of using primitives, in Bee the programmers can di-
rectly or indirectly alter the semantics of Smalltalk code. In
particular, the semantics of message sends can be modified
arbitrarily. This allows, for example, to implement micro-
operations known as underprimitives, which can be used
to replace primitives. Additionally, the programmer can di-
rectly communicate with the native-code compiler to alter
the shape of the emitted code. For example, it is possible to
select which methods to optimize, which ones to inline or
which selectors to change from dynamic dispatch to static
invoke. The code that is needed for replacing primitives is,
by most parts, not different to the one used to write plain
Smalltalk-application code.

All of Bee runtime, including its native code compiler and
the memory manager are written in Smalltalk. Consequently,
the migration of Bee to AMD64 platform only required work-
ing with either Smalltalk code or either assembly code.

3 Differences between x86 and x86-64
platforms

AMDé64 [5] is the 64-bit version of the 32-bit x86 architecture.
It supports wider memory addresses (up to 64-bits in theory)
and 64-bit registers and operations. Typical x86 registers
have expanded to add 64-bit versions of them. Additionally,
8 new 64 bit registers are available (R8 to R15), as shown in
figure 1. x86-64 instruction set is mostly backwards compati-
ble with x86, in the sense that most instructions present in
x86 are also present in x86-64, and are encoded in a similar
way in both architectures. In many cases, x64 instructions
analogous to their x86 counterparts are encoded exactly the
same as in x86; in other cases, the x64 version requires adding
prefixes. This is exemplified in figure 2.

3.1 Calling Convention and Application Binary
Interface Changes in Windows

In Windows-x86, there are two main calling conventions
supported: stdcall and cdecl [7, 11]. They are similar, with
EAX, ECX and EDX as callee-saved registers and arguments
pushed into the stack from right to left. The most notable

Javier Pimas

x86 AMD64

32-bit | 64-bit 32-bit 64-bit
eax rax r8d r8
ebx rbx rod r9
esp rsp ri4d ri4
ebp rbp ri5d ri5

Figure 1. To the left, the original x86 general purpose regis-
ter set. To the right, the registers added in AMD64. For each
x86 32-bit register, a 64-bit counterpart has been added; 8
new 64- and 32-bit registers were also added.

instruction encoding x86 encoding x64
push ebp 55 -

push rbp - 55

mov eax, ecx 89 C8 89 C8

mov rax, rcx - 48 89 C8

Figure 2. Instruction encoding is kept similar. For some
instructions like push, the same encoding is decoded differ-
ently in x86 and AMD64, to adapt to the new word size. For
others like mov, specifying a 64-bit register requires adding
a prefix.

difference is that in cdecl the caller is responsible for pop-
ping the arguments out of the stack, while in stdcall this
responsibility is assumed by the callee.

On the other hand, in Windows-x64 only cdecl convention
is supported. The 64-bit version of cdecl, however, has a few
differences compared to the 32-bit one: caller saved registers
are RAX, RCX, RDX, R8, R9, R10, R11; the first 4 arguments
are passed in registers RCX, RDX, R8 and R9; there is a
shadow space preallocated in the stack before the call and
the stack is 16-byte aligned considering the arguments at the
instant before the call.? Calling conventions directly affect
the foreign-function interface implementation, because they
influence the native code needed to perform external calls,
as explained later in section 4.10.

In Windows, except for pointer data types, C types mainly
maintain their size. This is particularly true for int and long
data types, which are kept 4-bytes wide. However, the change
in pointer size affects the layout of structure fields in mem-
ory, as fields which are placed after a pointer in a C structure
will see their offset increased. Data type size affects C struc-
tures and, as a consequence, also affects the foreign-function
interface implementation.

Executable files and dynamically-linked libraries for Win-
dows are stored in a format known as Portable Executable

2Unlike in System-V/x64 where it is aligned before calls without con-
sidering the arguments

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275

(PE). Files in this format contain not only the data and exe-
cutable code of the program or library, but also a set of tables
that describe what is stored in the file, such as exported
function offsets, imported functions and relocation informa-
tion. When 64-bit Windows was created, the PE format was
expanded to support 64-bits executables. The new format,
PE32+, is mostly equal to PE32, except for a few tables which
store pointers, that were widened to 64 bits.

4 Bee Execution Model and Migration to
AMD64

The first step required to start the transition from x86 to
AMD64 was to discover which parts of Bee were dependent
on the processor architecture and which were not.

Bee has been designed and implemented in terms of an
abstract register machine. This machine design is intended
to be agnostic of the underlying processor architecture and
word size. It consists of an abstract set of registers and oper-
ations that are converted to native code and data according
to a concrete target architecture. Furthermore, Smalltalk im-
ages usually do their best to be independent of the running
platform, improving portability.

However, in any Smalltalk system there are places where
the processor architecture surfaces, as in the representation
of numbers, in the foreign-function interface, and in calls
to primitives. This happens in implementations that run on
top of a typical VM, and Bee DMR adds to that list the set
of components that implement the low-level interface to
the platform. As an example, for x86, a set of compiler ob-
jects were implemented that allowed for native x86 code
generation at different stages (inline assembly, baseline JIT,
optimizing JIT). These objects create a layer of separation be-
tween code specific and independent of the architecture. Yet,
during migration we noticed that in practice there were other
spots where the x86 architecture details leaked into the run-
time code. As Bee is a dynamic metacircular runtime, there is
not a clean separation of VM code and guest-language code,
which in typical Smalltalks is mostly target-agnostic.

4.1 Migration Approach for the AMD64 port

To facilitate the implementation of the AMDG64 port, we chose
to take an incremental development approach. We decided to
make the minimal amount of modifications possible in order
to have the AMD64 version fully functional in the shortest
possible amount of time. These modifications were basically
two:

e Widen the slots of objects from 32 to 64 bits.
o Implement AMD64 code generators.

In contrast, there were a set of design decisions we chose
not to change at the same time, among which were the object
header format and the garbage collection algorithm [9]. We
considered that while widening to a 64-bit word size lets to
implement more efficient algorithms in areas like GC, mixing

IWST’18, September 1014, 2018, Cagliary, Italy

these changes with the ones needed for the 64-bit port would
lead to unnecessary instability of the system. We believe that
those changes can be done in ulterior stages. Limitations of
our approach are described in section 5.2.

The two modifications we decided to carry out had diverse
implications on the different components of Bee runtime. In
the following paragraphs we provide a detailed description
of them.

4.2 Bootstrapping

In order to establish the 64-bits system, we do not convert
objects to 64-bits online, but instead we setup the bootstrap
mechanism and Smalltalk library writers to cross-compile
a 64-bit system from the 32-bit one. This generates a new
64-bit executable that when executed will already live in the
AMD64 world. It is not possible in Bee to use 32 and 64-bit
objects at the same time. The 64-bit objects are serialized by
the library writers at the cross-compilation step.

During this writing process a few objects need to be su-
pervised:

o A set of Smalltalk globals are adapted according to the
size of the target architecture. For example the global
WordSize is set to 4 or 8 accordingly.

e Smalllntegers are migrated to the target word size.

e Methods for accessing external pointers are chosen
and installed depending on the target word size.

o Classes representing external structures are updated
to use the correct field offsets, as explained in 4.10.

At the same time, a few initialization steps were added,
so that constant objects are set to the appropriate values at
launch time. For example, things like null ExternalAddress
or ExternalHandle have to be created with the according
amounts of bytes.

4.3 OS Executable File Format

In typical Smalltalk VMs, which are written in or translated
to C/C++, the executable code of the VM is stored into PE
files by the C/C++ compiler, which understands PE and can
output executables in that format. In Bee, the executable
runtime image is bootstrapped from a set of objects that
represent code and data. Those objects are packed into a PE
file by a mechanism that models the PE format in Smalltalk.
For this reason, the migration of Bee DMR to x64 platform
started by the implementation of the PE32+ format.

4.4 Change in Word Size

In Bee, as in any Smalltalk, the big majority of the classes
are independent on the size of the word. Only classes that re-
quire implementing lower-level components need adjusting
to the system word size. The most notable ones in Bee were
Process, Thread, Memory, StackFrame, ExternalHandle, Ex-
ternalAddress, FFIMethod, Smalllnteger and Largelnteger.

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

IWST’18, September 10-14, 2018, Cagliary, Italy

In Bee, there are only two types of objects in the heap:
byte objects and pointer objects. Pointer object slots are
accessed indirectly via instance variable reads and writes
(emitted by the JIT), or directly through #_basicAt: and #_ba-
sicAt:put: underprimitives, explained in section 4.9. In both
cases, the offsets calculated for object or stack slots are never
written explicitly, but computed by the JIT compilers or the
implementation of #_basicAt:(put:). This meant having sin-
gle points of modification for adapting to the desired word
size. The implementation of offset calculation for instance
variables was adapted by only having to touch the JIT and a
couple of low-level methods, and this was enough to adapt
slot accessing in pointer objects. Byte objects, on the other
hand are mostly independent of the word size, except on
two cases: when handling large integers, and for objects that
represented addresses, like ExternalAddress. However, in
those latter cases, the changes needed were small: switching
from using the constant 4 (for the word size) to using the
global value WordSize, or in other cases, using a constant
associated to the word size (i.e. the maximum Smalllnteger).
Those constants are stored in pool dictionaries, which can ei-
ther be changed during bootstrapping or either be initialized
at start-up time.

Finally, we implemented a set of objects that represent the
different application binary interfaces (ABI) in use: X86ABI
and X64ABI. These objects provide the knowledge needed
to adapt code generators to the underlying architecture. For
example, they provide the mapping from abstract registers
to concrete ones. There are 8 classes that use those objects,
all used by the different native-code compilers: the baseline
JIT, the register allocator, the assembly-code emitter, and
other stages of code optimization.

4.5 Bee Object Memory Format

In Bee’s memory, objects were stored in a format designed
for 32-bit arquitectures [8]. In that format, objects contained
an 8-byte or 16-byte header that specified the object size, its
type and some other properties like whether they contained
pointers or bytes. Our desire to allow for using more memory
impacted directly in the format of objects in memory: the
most straightforward way of allowing this is to widen object
pointers to 64 bits, which in our case meant to make slots of
objects in memory double in size.

4.6 Assembly Encoder

Bee contains two main native-code compilers: a baseline
JIT and an optimizing compiler. Both of them use the same
assembler as a back-end which has been designed in terms
of the abstract register machine previously mentioned. In
this machine, there exist R register for passing a receiver
or returning a value, A register used mostly for storing an
argument, T register for a temporary, S for storing self, E for
the current closure environment and finally SP and FP for
the stack top and frame pointers respectively. This results

Javier Pimas

X86ABI>>#regR

“eax

X64ABI>>#regR

“rax
BaseAssembler>>#and: op1 with: op2
self encode: 'and' with: op1 with: op2

BytecodeAssembler>>#andRwithA
self encode: 'and’ with: abi regR with: abi regA

BytecodeAssembler>>#compareRwithSindex: index
pointer
reset;
length: abi addressLength;
base: abi regS;
displacement: index — 1 « abi wordSize.
self encode: 'cmp’ with: abi regR with: pointer

Figure 3. X86ABI and X64ABI answer a different R register.
The assembler delegates slot indexing to the abi object as
much as possible.

in 7 registers which is almost the same amount of general
purpose x86 registers.

In x64, the number or registers has been doubled, but
Bee abstract machine has been kept without major modifica-
tions. The concrete registers used in x86 are replaced with
their expanded 8-byte counterparts. The assembler instruc-
tion encoding interface works at two levels: on one hand, it
provides methods to encode instructions passing concrete
registers; on the other hand, it provides an API to pass ab-
stract registers, which are mapped one-to-one to concrete
ones according to the target platform. For both of those two
levels, the assembler API does not directly expose x86 or x86-
64 instructions. Instead, operations provided to the client of
the assembler interface are more abstract. Examples of these
operations are things like pushing and popping values into
and out of the stack, loading and storing values from and to
memory, or performing arithmetic and logical operations in
registers.

Figure 3 shows the implementation of typical methods
of the assembler interface, and how the a assembler uses
the ABI objects described in 4.4 to abstract away the differ-
ences between x86 and x64. Those objects provide the set of
available registers in the platform, a mapping from abstract
registers to concrete ones and the target word size. They
also allow the assembler to transform from pointer indexing
operations to slot offsets according to the word size.

x86 instruction encoding is a complex process. The assem-
bler delegates this task to another object: the InstructionEn-
coder. This encoder is in charge of writing the instruction

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486

488
489
490
491
492
493
494
495

prefixes, opcode and operands into a machine code stream.
Notably, the same encoder can write both x86 and AMD64
instructions, because their encoding is similar.

The new assembler interface. Implementing the new x86-
64 assembly encoder was the most time consuming task of
all the migration project. The main reason was that we did
not do a direct port from the x86 assembler to an x86-64 one.
The original x86 assembly encoder was targeted to be used
mostly by the JIT compiler. This meant that its API only pro-
vided for instructions used by the JIT, which were directly
translated to the bytes that encoded those instructions. For
that reason, native-code stubs needed for callback and dis-
patch optimization mechanisms could not be written using
our original x86 assembler, and were hard-coded as byte ar-
rays. Those arrays were created by writing and assembling
them with external tools. The new assembler was designed
to be more generic so that we could change to dynamically
generated stubs, written in terms of Bee abstract machine,
working in both architectures. The greatest challenge on this
area was implementing the logic behind instruction encod-
ing in x86-64, which is very complex. Additionally, the new
assembler is capable of encoding instructions for both x86
and x86-64 modes.

Instructions with 64-bit immediates. x86-64 operand en-
coding presents a subtle but important limitation compared
to x86. While in x86 it is possible to encode immediate val-
ues of the word size (32 bits), in x64 immediate operands are
limited to only 4 bytes. The only exception to this limitation
is in movabs instruction, which allows encoding 8-byte im-
mediate values into 64 bit registers. This limitation makes it
harder to manipulate pointer and small integer values in JIT-
compiled code. In x64 we added an abstract V register, which
is used to overcome this limitation. When needed, operations
with 8-byte immediates (i.e. pushing a pointer in 64 bits) are
done in two steps: first the immediate is moved to V register
using movabs, then V is pushed. V register is mapped to R11
in x64. This approach is not the only possible one. Another
solution is to store pointers separate from native code, and
to only let native code indirectly manipulate them, through
some base register. For example, in x64, it is possible to use
RIP-relative addressing, so a pointer table could be stored
after each method’s native code. In native code, pointers
could then be accessed via instructions like mov rax, [rip+k]
or push [rip+k], where k is an offset from the instruction to
an entry in the table. We did not implement that solution
for two reasons: such a change would be against our mini-
mal modifications approach (section 4.1), and also because
RIP-relative addressing is not available in 32-bit x86, so we
would have needed to use different pointer encoding tech-
niques for x86 and x86-64. Yet another possibility would be
to split pointer loading by combining smaller 32-bit bit-shift
and bit-or operations. We discarded that technique as we

IWST’18, September 1014, 2018, Cagliary, Italy

considered it too complex. For example, the garbage collec-
tor would need logic to reconstruct each object pointer in
JIT-compiled code, as the original pointers would be split in
many instructions.

4.7 Native-Code Compilers

The baseline JIT communicates with the assembler in terms
of abstract instructions and registers. This makes its transi-
tion to 64 bits mostly transparent. Even the registers used
are abstract, and the assembler translates them to concrete
ones.

For the optimizing compiler, on the other hand, there is
almost no mapping from abstract to concrete registers. This
compiler directly talks to the target ABI objects described
in section 4.4, to obtain the set of available registers in the
architecture. It also asks for the concrete registers assigned to
the receiver and the return value. With all that information in
hand, the register allocator can assign registers to the values
of its intermediate representation and delegate encoding to
the assembler. Intermediate operations, on the other hand,
are target agnostic. As a last step, the machine-code emitter
talks to the assembly encoder who converts them to x86 or
x64 instructions accordingly.

Figure 4 shows various snippets of the native-code compil-
ers. The assembler interface which abstracts away concrete
register names, used by the baseline JIT, is shown in the first
example. The assembler, according to its own configuration,
is in charge of converting abstract registers to concrete ones.
To the client, the assembler interface does not expose spe-
cific instructions of the x86 or x64 architectures. Actually
a single operation, from the client point of view, could be
implemented by the assembler as a list of concrete machine
instructions. In the last example we see the code emitter for
the optimizing compiler. In this case, the other level of the
assembler is used. The intermediate operations are assigned
two concrete registers, and finally the assembler is told to
emit machine code to apply a bitwise or on them.

4.8 Integer Representation

Bee integers are divided in Smalllntegers and Largelntegers,
as usual in many Smalltalks. Both types of integers are stored
in a two’s complement representation. The code of those
classes is dependent on the word size but mostly independent
of the processor architecture (specially because of the use
of the abstract assembler). The methods had to be reviewed
so that they would adapt to the word size. Example of this
were Smalllnteger»sizelnBytes, Smalllnteger»bitShift: or
Largelnteger»reduce.

4.9 Primitives and Underprimitives

Unlike traditional Smalltalk VMs, Bee DMR has no primitives.
The code for what is usually represented as a primitive is
instead coded in Smalltalk, using underprimitives, which can
be seen as very specific fragments of primitive operations

496

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

IWST’18, September 10-14, 2018, Cagliary, Italy

LoadArgumentBytecodeNativizer>>assemble
assembler loadRwithFPindex: self argumentindex

JumpBytecodeNativizer>>assemble
| target |
target := methodNativizer labelAt: self target.
assembler jumpTo: target

LookupLinker>>emitSend: aSelector using: anAssembler
| send |
send := SendSite sending: aSelector with: lookup.
anAssembler
load: anAssembler regA withPointer: send oop;
holdJustEmmitedReferenceTo: send;
calllndirectReg: anAssembler regA

BareMetalCodeEmitter>>assembleBitOr: instruction
| left right |
left := allocation at: instruction left.
right := allocation at: instruction right.
assembler or: left with: right

Figure 4. Typical snippets of the different code generators
communicating with the assembler.

like accessing raw pointers in memory, or doing low-level
arithmetic and logical operations on registers. The code of
what used to be primitives is written in Smalltalk. The only
trick is that at specific points, for special messages sends, the
JIT compiler inserts special inline assembly code instead of
doing a lookup dispatch. The methods that replace primivi-
tives end-up being mostly independent of the architecture,
and the low-level underprimitive details were the only things
that required adapting. In this port, as the assembler already
provided the abstract interface, the only requirement was to
take into account that the word size could be 4 or 8 bytes.

In the case of the object headers, as they remained un-
changed, few modifications were needed. The access to the
bits present in object headers is reified in the class Object-
Header. This serves as a single point of modification if any
change to the header format is done. For byte accesses (i.e. ob-
ject flag accesses) there was nothing to do. For slot accesses,
used for behavior and extended object size, care had to be
taken to always use 32-bit wide reads and writes. Otherwise,
when targeting 64-bits, the assembler would incorrectly use
a slot size of 64-bits to access these 32-bit fields.

Figure 5 shows an example of a part of at: primitive imple-
mentation. basicObjectAt: is the part used for accessing slot
objects. It does not contain any platform dependent code.
basicObjectIndexOf: receives a slot index, an returns other
one (depending on the object type it could be different of the
received one). Finally, _basicAt: underprimitive is inlined by
the JIT to actually access that slot in loadRwithRatA. The

Javier Pimas

Object>>#basicObjectAt: grossindex
| index |
index := self basicObjectIndexOf: grossIndex.
*self _basicAt: index

InlineMessageLinker>>#assembleBasicAt
| noninteger |
nonlnteger := assembler labeledIntegerNativizationOfA.
assembler
loadRwithRatA;
@ nonlnteger

Figure 5. A part of the implementation of at: primitive.

slot offset is calculated at execution time, by shifting the
index 2 or 3 bits according to the word size.

4.10 Foreign-Function Interface

Foreign-function interface of VMs usually comprises calling
external C functions, accessing external C structures being
called by external code through callbacks. In Bee DMR, all
of those things are implemented in Smalltalk.

The calling convention for Windows x64 is cdecl, which
works in a very similar way to its 32-bit x86 counterpart.
The first 4 arguments (from left to right) are not passed in
the stack but through registers. However, the convention
demands a shadow stack space of the same size than those 4
registers. This fact helped us to reuse the 32-bit cdecl code,
which passes all arguments through the stack. For the 64-bit
version, we just add a final step before the call to the external
function, to offload the contents of the topmost 4 stack slots
to registers.

Support for accessing external C structures in the differ-
ent architectures did not present big obstacles but required
to solve a subtle discrepancy: for a same C structure, the
memory representation can vary depending on the proces-
sor architecture and the platform. This means that the size
and offset of the fields in the structures can vary depending
on the platform.

Bee resolves this problem mostly automatically. First, all
C structures are represented with classes that implement the
class-side method def. This method returns for each class
the corresponding C structure definition, as a string. During
development time, a parser reads those definitions and gen-
erates accessor methods for each field with the correct size
and offset. The offsets are specified through pool variables.
The parser generates two analogous pool dictionaries. The
keys in those dictionaries are the names of the fields in the
definition method, and the values are their corresponding off-
sets, for 32 bits in one dictionary and for 64 bits in the other.
Field offsets are never specified using constants but using
their corresponding automatically generated pool variable.

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

661
662
663
664
665
666
6

=)
3

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

typedef struct tagCOPYDATASTRUCT {
// off=32 | off—64 | size

ULONG_PTR dwData; // 0 0 4/8
DWORD cbData; // 4 8 4
PVOID IpData; /1 8 16 8

} COPYDATASTRUCT, «PCOPYDATASTRUCT;

COPYDATASTRUCT>>cwData:
self longAtOffset: cwData

COPYDATASTRUCT>>dwData: anInteger
self pointerAtOffset: dwData put: anInteger

Figure 6. A C structure of Windows. The size of dwData
is 4 or 8 bytes. The offset of cbData and IpData is different
in 32 and 64 bits. lpData offset is affected by padding in 64-
bits. The total size of the struct is 12 bytes in 32 bits and 24
bytes in 64 bits. A parser calculates all this automatically and
generates accessor methods.

When bootstrapping the system, the library generator iter-
ates through all classes that correlate to external C structures
and accordingly tweaks them to use the pool dictionaries
that correspond to the target architecture. Figure 6 shows
an example of a Windows C structure, with the field sizes
and offsets. The snippet also shows two of the automatically
generated methods to exhibit how the generated code adapts
to the varying sizes and offsets.

From the point of view of the clients of the foreign-function
interface, little care to processor architecture is needed when
calling external functions. The generated structure bindings
contain functionality to allocate them in the external C heap.
Calculation of the correct structure size is abstracted from
the client. A manual code review of the clients of the foreign-
function interface was still required, to detect places where
external pointers were incorrectly assumed to be 4 bytes.

4.11 Callbacks

For C callbacks, adding support for x64 required only little
changes. When a callback is received by Bee, a native-code
stub saves the processor registers according to the calling
convention and sends a Smalltalk message to the object that
owns that stub. As the last step of the callback handling,
the processor registers are restored and a return is issued.
The original callback stub was written in assembly, and the
encoding of the assembly instructions was stored in a byte
array. We changed this to use the new abstract assembler in-
terface. The code is generated using abstract register names,
which makes most of the code independent of the processor
architecture. Between x86 and x86-64, there are two main
differences though: in x86-64 some arguments are passed in

IWST’18, September 1014, 2018, Cagliary, Italy

registers; as x86 defaults to stdcall calling convention while
x86-64 defaults to cdecl, stack clean-up has to be done a little
bit differently. The difference in argument passing between
x86 and x86-64 is solved in a way analogous to what is done
for C function calling. At the prologue of the callback stub,
the registers RCX, RDX, R8 and R9 are copied back to the
stack in the shadow space. This allows the callback handling
code that follows the stub to be able to read all arguments
from the stack independently of whether the platform is 32
or 64 bits. On callback exit, the only difference is that for
32 bits the callback clean-up code has to pop the arguments
from the stack, while in x64 the arguments are popped by
the caller.

4.12 Garbage Collection

Adjustments needed for Bee’s garbage collector [9] have
been minimal. Of the 83 methods that compose the garbage
collection algorithm, only 5 needed any change. There were
two types of modifications:

Behavior Slot. Code that dealt with the behavior slot in
object headers had to be tuned, because generic reads
and writes of slots (which were used originally in 32-
bits code) would become 64-bit memory accesses in
x64. Instead, as the behavior slot in object headers is
only 32-bit wide, a special 32-bit access has to be done
both in x86 and x64.

Forwarding Index. In different phases of Bee GC copying
algorithm, object addresses are converted to forward-
ing indexes. This is done by subtracting the base ad-
dress of a GC space to the object address, and then
shifting the result 2 or 3 bits, depending if 32 or 64 bits.
For that, the WordSizeShift global was used.

5 Discussion

Bee DMR is fully written in Smalltalk, in contrast to typical
Smalltalk VMs written in C/C++, and also different from
Squeak’s VM which is written in slang but then translated
to C [4]. This poses a significant difference between Bee and
others: in Bee, the majority of memory accesses are done in
terms of type-less object pointers.

One of the most feared challenges predicted before the
migration started was the migration from a 32-bit/4-byte
architecture to a 64-bit/8-bytes one. The difficulty expected
was that detecting all the places where Smalltalk code as-
sumed a word size of 4 bytes would be hard. In practice,
this problem did not result as tough as expected. Detection
of the methods that required changes was done manually,
looking at methods of classes that were suspicious, and also
by searching for senders of very low-level messages. In total,
around 120 methods in the whole system depend on the con-
tents of the global WordSize. Less than a dozen methods use
a similar variable called WordSizeShift, which is used when
converting pointers to indexes and vice versa, via shifting

736

746

752

763

768

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

IWST’18, September 10-14, 2018, Cagliary, Italy

operations. There are 7 classes that use a wordSize instance
variable: half of them are used for the assembler/disassem-
bler, the other half for building code libraries.

5.1 Debugging

Debugging the 64-bit version of Bee posed a challenge, spe-
cially at the beginning of the process. We used a combination
of IDA debugger and disassembler [2] and our own native-
code debugger. With both of them, an initial effort had to be
done, to make debugging scripts portable to both x86 and
AMDé64, and to abstract away the differences that objects
present in memory.

While the detection of most of the Smalltalk methods that
had to be changed occurred during a Smalltalk code review
process, a little amount of them were not found initially and
were only caught at run-time, when they would end crashing
the system.

5.2 Limitations

The migration approach described in 4.1 has limitations:

o The size field in the header of objects is limited to 32
bits, which in practice means that the biggest object
can be 32GB.

e Pointers to behavior are 32-bit wide, so behavior ob-
jects have to live in the lower 4GB area of memory.
This limitation was introduced to ease in migration
from 32 to 64 bits, but added a series of drawbacks.
As behaviors have to live in the lower memory, spe-
cial care has to be taken when instantiating behaviors
(putting them in a special GC space if needed). Small-
talk libraries also have to be treated specially, loading
them below the 4GB limit or migrating their behaviors
to the lower area after loading them.

e The GC algorithm has not been modified, and is not
optimized for heaps with size in the order of gigabytes
or bigger. Currently, the only implemented approach
is a scavenging copying collector (which is disabled by
default in the old space). Enabling it in such scenarios
may introduce undesirable pauses to the system.

e At present, it is only possible to cross compile from
x86 to x64, but not the other way around. While going
from x64 to x86 should be straightforward, we have
not done any attempt to support that functionality yet.

5.3 Lessons

The target-agnostic assembler interface proved useful to
build a compilation framework that can freely change be-
tween processor architectures. The combination of an assem-
bler API that accepts both abstract registers and concrete
ones, with the help of the X86ABI and X64ABI objects, al-
lowed to share the code of all stages of compilation in both
architectures.

Javier Pimas

Smalltalk code is inherently independent of processor ar-
chitecture, and this extended to the kernel that forms Bee
DMR. Components like the assembler required modifications,
not because they depended on the architecture, but because
they modelled the architecture.

In a Smalltalk image, foreign-function interface is the main
platform-dependent piece of code of user applications. If the
C bindings are generated automatically, the migration task
is reduced to a minimum, only requiring the developer to
deal with corner cases. This experience showed the value
of adopting a systematic approach for handling code that
communicates with external libraries: having a parser for C
structure definitions and generates Smalltalk accessors frees
the programmer from writing error-prone boilerplate code.

We did not do a comparable port of a traditional VM, so
we cannot directly contrast how this work would apply in
that situation. However, there are points to be evaluated. We
do not see any obstacle to use the same assembler design
in a traditional VM. Moreover, at image level, automatic
generation of bindings for C structures is directly applicable
to any Smalltalk. We still do daily development of Bee on
top of a host VM. This posed the advantage of letting us
work freely on the native-code compilers and assembler,
because they were not in use at the same time they were
being modified.

6 Validation

To assess the performance of the 64-bit port we run a se-
ries of benchmarks. In particular we used the Are We Fast
Yet benchmarks [6], ranging from micro to macrobench-
marks. DeltaBlue and Richards [13] are classic benchmarks
evaluating the performance of object-oriented applications.
Havlak [3] is an optimization algorithm for a compiler but
is representative for many application-level optimization
problems, too. And the Json benchmark parses a larger JSON
document, which is relevant for the performance of many
REST services used in today’s web applications or micro
services. The rest is a collection of numerical and OO bench-
marks stressing particular aspects of the implementation.

The benchmarks were run on a machine with a 2.8Ghz
4-core Core i7 7700HQ with hyperthreading and 16GB of
memory. The operating system is a 64-bit Windows 10. Mea-
sures were taken collecting 50 iterations for each benchmark.

For the performance comparison, we consider peak per-
formance only and discount start-up, warm-up, and JIT-
compilation times.

The benchmarks are run with an initial heap size of 64
MB, to minimize noise introduced by the GC. The results
are normalized to the 32-bit version of Bee DMR, to use it
as the baseline for the performance comparison. We report
averages and confidence intervals with a = 95%.

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871

873
874
875
876
877
878
879
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926

928
929
930
931
932
933
934
935

Macrobenchmarks

M 32-bits ™ 64-bits

15

1
) -
0

Richards DeltaBlue Havlak Json

Microbenchmarks

12

1
08
0,6
0.4
0,2

0

List Mandelbrot NBody Permute Queens Sieve Storage Towers

Figure 7. Normalized macro- and micro-benchmarks execu-
tion times, relative to 32-bit Bee (lower is better).

The results are shown in Figure 7. We can observe that
performance of the 64-bit version is competitive with the 32-
bit one. The results are mixed, ranging from taking 12% more
time in the worst case (Havlak) for the 64-bit version, to being
16% faster in the best case (DeltaBlue). The algorithms used to
implement the 64-bit version of Bee DMR are the same than
the ones used in the 32-bits implementation. In 64-bits Bee,
pointer objects can be almost double in size than their 32-bits
counterparts. However, the AMD64 architecture seems to
be optimized to keep up with the increased memory access
demands. On the other hand, in 64 bits, small integers can
be used to represent bigger numbers than in 32 bits, which
could help to improve performance of integer arithmetic
operations. Taking all these characteristics into account, the
results are not unexpected or surprising.

7 Future Work

The work presented here served the authors as a strong evi-
dence of the usefulness of the migration approach described
in section 4.1. It gives us confidence on the potential to use
that same approach to expand Bee to other platforms. There
remains to be explored how this same design would stand
when porting to other not so similar processor architectures
like ARM or RISC-V. We still would like to establish what
are the obstacles in bootstrapping back from a 64-bit system
to a 32-bit one. Finally, now that we have full support for
64-bits environments, we have to discover how to manage
the huge amounts of memory that the system can theoreti-
cally handle; this will impact mostly in the design of Bee’s
garbage collector.

IWST’18, September 1014, 2018, Cagliary, Italy

Acknowledgments

The author wants to thank Leandro Caniglia, Valeria Murgia,
Jan Vrany and the rest of the development team of Palan-
tir Solutions for providing valuable ideas, discussions and
reviews, and being in charge of the development and main-
tenance of Bee runtime libraries. This work was funded by
Palantir Solutions.

References

[1] B. Alpern, C. R. Attanasio,].J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S.J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,

J.C. Shepherd, S. E. Smith, V.C. Sreedhar, H. Srinivasan, and J. Whaley.

2000. The Jalapeno virtual machine. IBM Systems Journal 39, 1 (2000),

211-238. https://doi.org/10.1147/sj.391.0211

Chris Eagle. 2011. The IDA pro book. No Starch Press.

Robert Hundt. 2011. Loop recognition in c++/java/go/scala. Proceedings

of Scala Days 2011 (2011), 38.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.

1997. Back to the Future: The Story of Squeak, a Practical Smalltalk

Written in Itself. In Proceedings of the 12th ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications

(OOPSLA *97). ACM, 318-326. https://doi.org/10.1145/263698.263754

Intel. 2018. Intel® 64 and IA-32 Architectures Software Developer’s

Manual. Volume 1: Basic Architecture 2 (2018).

Stefan Marr, Benoit Daloze, and Hanspeter Mossenbock. 2016. Cross-

Language Compiler Benchmarking—Are We Fast Yet?. In Proceedings

of the 12th Symposium on Dynamic Languages (DLS’16). ACM, 120-131.

https://doi.org/10.1145/2989225.2989232

Microsoft Corporation. 2018. Argument Passing and Naming Con-

ventions. (2018). https://msdn.microsoft.com/en-US/library/984x0h58.

aspx [Online; accessed 20-July-2018].

Javier Pimas, Javier Burroni, and Gerardo Richarte. 2014. Design and

implementation of Bee Smalltalk runtime. (2014).

Javier Pimas, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr.

2017. Garbage Collection and Efficiency in Dynamic Metacircular

Runtimes. In Proceedings of the 13th ACM SIGPLAN International Sym-

posium on Dynamic Languages (DLS’17). ACM, 12. https://doi.org/10.

1145/3133841.3133845

[10] David Ungar, Adam Spitz, and Alex Ausch. 2005. Constructing a
metacircular Virtual machine in an exploratory programming envi-
ronment. In OOPSLA *05: Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications. ACM, 11-20. https://doi.org/10.1145/1094855.1094865

[11] Wikipedia contributors. 2018. X86 calling conventions.
(2018). https://en.wikipedia.org/w/index.php?title=X86_calling_
conventions&oldid=850925564 [Online; accessed 20-July-2018].

[12] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Dayneés, and Douglas Simon. 2013. Maxine: An Ap-
proachable Virtual Machine for, and in, Java. ACM Trans. Archit. Code
Optim. 9, 4, Article 30 (Jan. 2013), 24 pages. https://doi.org/10.1145/
2400682.2400689

[13] Mario Wolczko. 1996. Benchmarking Java with Richards and Deltablue.
(1996). http://www.wolczko.com/java_benchmarking.html

— —
w N
[t i}

—
S
flass

(5

—

G

—

[7

—

[8

[}

[9

—

936

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

978
979
980
981
982
983
984
985
986
987
988
989
990

https://doi.org/10.1147/sj.391.0211
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/2989225.2989232
https://msdn.microsoft.com/en-US/library/984x0h58.aspx
https://msdn.microsoft.com/en-US/library/984x0h58.aspx
https://doi.org/10.1145/3133841.3133845
https://doi.org/10.1145/3133841.3133845
https://doi.org/10.1145/1094855.1094865
https://en.wikipedia.org/w/index.php?title=X86_calling_conventions&oldid=850925564
https://en.wikipedia.org/w/index.php?title=X86_calling_conventions&oldid=850925564
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/2400682.2400689
http://www.wolczko.com/java_benchmarking.html

	Abstract
	1 Introduction
	2 Bee Dynamic Metacircular Runtime Overview
	3 Differences between x86 and x86-64 platforms
	3.1 Calling Convention and Application Binary Interface Changes in Windows

	4 Bee Execution Model and Migration to AMD64
	4.1 Migration Approach for the AMD64 port
	4.2 Bootstrapping
	4.3 OS Executable File Format
	4.4 Change in Word Size
	4.5 Bee Object Memory Format
	4.6 Assembly Encoder
	4.7 Native-Code Compilers
	4.8 Integer Representation
	4.9 Primitives and Underprimitives
	4.10 Foreign-Function Interface
	4.11 Callbacks
	4.12 Garbage Collection

	5 Discussion
	5.1 Debugging
	5.2 Limitations
	5.3 Lessons

	6 Validation
	7 Future Work
	Acknowledgments
	References

