
Metaphysics: Towards a Robust Framework for
Remotely Working with Potentially Broken Objects

and Runtimes
Javier Pimás

Palantir Solutions
Buenos Aires, Argentina
javierpimas@gmail.com

Stefan Marr
Johannes Kepler University

Linz, Austria
stefan.marr@jku.at

Abstract
Dynamic Metacircular Runtimes (DMRs) enable a new way
of developing language virtual machines (VMs). Instead of
writing VMs by manipulating files, DMR programmers mod-
ify methods, classes, and generally objects of a running sys-
tem. However, while this approach allows us to understand
the behavior of a VM more easily by seeing it alive, it is also
problematic, because the development environment relies
on the VM to be stable and work correctly, but even simple
changes could break the whole VM.

In this work, we experiment with adapting live program-
ming tools to make them safer for the development of core
DMR components. We make them robust so that they can
work on DMRs that crashed or are not fully working. This
paper describes Metaphysics, a framework that combines
mirrors and proxies to reify different message execution se-
mantics, allowing execution of code by mixing behavior of a
target, possibly broken DMR with an IDE DMR that is fully
working. With Metaphysics we built native code debugging
and profiling tools that use of the metacircularity of our Bee
DMR. They enable the dynamic, fast-paced edit-test cycle
that we are used to from developing application-level code,
which is a major improvement over the classic edit-compile-
get-coffee-test cycle used for state-of-the-art VMs.

CCS Concepts • Software and its engineering → Ob-
ject oriented languages;Runtime environments;Garbage
collection; Dynamic compilers;

Keywords debugging, remote, dynamic, metacircular, run-
times

ACM Reference Format:
Javier Pimás and Stefan Marr. 2017. Metaphysics: Towards a Robust
Framework for Remotely Working with Potentially Broken Ob-
jects and Runtimes. Presented atWorkshop on Meta-Programming
Techniques and Reflection (Meta’17). 5 pages.

This work is licensed under Creative Commons Attribution-NoDerivatives
4.0 International (CC BY-ND 4.0).
Meta’17, October 22, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s).

1 Introduction
Dynamic Metacircular Runtimes (DMRs) [7] are meant to im-
prove developer understanding of language virtual machines
(VMs) and simplify the modification of VM components.
DMRs expose vital components of the VM to application
developers via the standard tooling, e.g., inspectors, debug-
gers and code browsers, which run within the same VM.
These components can be changed quickly, giving instant
feedback. However, even small changes to vital components
can lead to the crash of the entire VM leaving high-level
tools unresponsive.

The main problem is that current high-level tooling does
not interact well with low-level VM aspects, especially when
VMs reached an inconsistent state, perhaps with corrupted
memory, or simply crashed. In this work, we investigate how
this can be addressed.
Our work is based on the Bee DMR [7], a metacircular

Smalltalk implementation with native code compilation and
garbage collection. Bee’s performance is roughly similar to
the CogVM’s, a Smalltalk VM used by Squeak and Pharo. In
the first stages of Bee’s development, we used standard low-
level tools such as GDB and IDA Pro for debugging low-level
issues. While they are customizable and could be adapted
to use Bee’s meta information, they do not provide the in-
teractivity expected by Smalltalk developers. Furthermore,
customizing these tools means duplicating the mechanisms
to deal with meta data that exist in the DMR. Changes to the
format of meta data require changes to external tools too. To
avoid these issues, we created a new set of tools that enrich
the programming environment. Unlike the set of existing
Smalltalk tools such as inspectors, browsers and debuggers,
the new tools are designed to interact with a different Bee
VM process, allowing developers to work with objects in the
target VM which may be paused for debugging. The process
might have been paused by the operating system because
it executed an invalid operation, or by the developer for de-
bugging purposes. Either way, the process is still alive, its
memory can be read or written, and it may even be possible
to change it and to let it continue executing.
For our new tools we developed the Metaphysics frame-

work, inspired by ideas of Bracha and Ungar [1]. This frame-
work allows access to remote objects by providing mirrors

1

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Meta’17, October 22, 2017, Vancouver, Canada Javier Pimás and Stefan Marr

for structural reflection and proxies for behavioral interces-
sion, making possible to adapt message sending, i.e., method
invocation semantics, based on the specific need of the cur-
rent situation.

This paper describes the problems that motivated the cre-
ation of Metaphysics and the object model we are working
on to solve these problems.

2 Dealing with Objects in Different
Contexts

This research is guided by our desire to work on a target
system that potentially is not working. This could be either
a process that was paused by the operating system or a
memory dump of a program that crashed.1 Either way, no
execution is taking place in the target system. We can access
such a system via APIs that lets us read and write memory,
registers, processor flags, etc.
A DMR developer is assumed to use a fully-working VM

for the tools, i.e., IDE. This VM is expected to be similar
to the target system, but it does not need to be identical.
There might be different classes loaded in each system, or
methods of the same classes could differ. Using a similar
system ensures that information missing about the target
system, for example the shape of a class, can be supplemented
with information that is expected to be equivalent.

The contexts in which DMR developers use these tools
vary greatly and there does not seem to be a single approach
that matches all situations. Some tasks require only access
to structures, others require execution of code in the tar-
get system, and in other cases one might need to simulate
what a method activation would do in the target system.
Furthermore, the required execution semantics can change
dynamically as the exploratory development tasks evolve.
The reminder of this section gives examples for the re-

quired execution semantics that we came across while work-
ing on the Bee Smalltalk DMR.

2.1 Remote Object Discovery
As first example, let us consider a situation in which we need
to identify objects in the target VM. Let us assume a VM gets
paused and we want to obtain information about its most
important objects: its addresses, classes, globals, symbols
(identifiers in Smalltalk), etc. We have to discover where
objects are and we do not have yet access to the symbols
of the system, so it may not be possible to send messages
to objects. The memory of the target system contains all
needed metainformation, e.g., the dictionary of globals, from
where we can fetch objects such as true, false and nil, Object
class, its metaclass, CompiledMethod, etc. Given the address
of an object it is possible through meta information to ac-
cess its fields and internal structure. This situation is a good

1While we expect to be able to work with crash dumps in the future,
we have not worked on this yet.

candidate to be solved with mirrors [1], because it requires
mainly structural reflection.

2.2 Remote Code Execution
When profiling a system, we want to gather information
about the execution trace by looking at the compiled meth-
ods in the stack. While the situation is similar to the previous
example, it poses new challenges. A Smalltalk stack can be
traversed withmirrors to gather a call trace. However, obtain-
ing the source code of compiled methods is more complex,
because Bee’s mirrors do not support it directly. Accessing
the internal structure of a compiled method to find its source
code directly would be a bad practice, because it means vio-
lating encapsulation.

In general, objects are designed in ways that decouple the
external view from the internal structure. In practice, this
means when accessing an object’s internal structure from the
outside, it can appear very different from the actual machine
representation. Most of the time, the provided view is more
high-level and we would prefer to work with the high-level
view through an object’s external interface, and only go into
the internals when it is really necessary.
Back to our example of fetching the sources of a com-

piled method, a method such as #sourceCode encapsulates
this process, which can be complex. Therefore, we want to
execute it in the target system to retrieve the result.

2.3 Simulation of Remote Code Execution
When a system is paused it may have been working up to
this point or may have crashed (in that case it is still alive and
we have trapped the exception by externally attaching to the
process). We might want to inspect objects of such a system,
understand the execution context, send messages to objects,
and perhaps make changes to recover from a crash. However,
the objects we are accessing could be broken, which means
that their own memory or the memory that determines their
behavior (containing class, methods, etc) could be corrupted.

Let us consider again the example of fetching the sources
of a method, this time in a crashed system. In this case, we
may not be able to remotely execute #sourceCode in the
target system because it could modify state of the runtime
and make debugging more difficult. As an alternative, we
could take the code of #sourceCode from the target sys-
tem and simulate its execution by interpreting it locally. Of
course, obtaining the source code of the remote #sourceCode
method means we need the source of #sourceCode causing
an infinite recursion. This can be solved by bootstrapping
an initial version of this method from the local system, use
it to simulate execution on the target system and continue
from there.

Our intention is then to create a sufficiently generic frame-
work which lets the developers handle all the situations
presented naturally, and that can change over time in an in-
teractive debugging session to adapt to most needs possible.

2

Metaphysics: A Robust Remote Framework Meta’17, October 22, 2017, Vancouver, Canada

an ObjectHandle

a Runtime

0x401008

ru
nt

im
e

object format

oid

storage

metaspecies

bridge

Figure 1. Object handles are opaque references to objects
in a target runtime. They are able to answer querys about
the objects they point to only by delegating them to their
runtime.

3 The Design of the Metaphysics
Framework

This section discusses how theMetaphysics framework solves
the problems identified in the previous section for the Bee
DMR. The Bee runtime is written in Smalltalk, using the
standard Smalltalk browsers, inspectors, and debugger. It is
a self-hosted DMR [7]. Its structure, as well as Bee’s object
format and ABI are detailed in Pimás et al. [6, sec. 3].

3.1 Base Metaphysics Concepts
The framework builds on the reification of a Smalltalk run-
time and its objects. It is implemented using the underlying
OS API for external process debugging to enable communica-
tion with the objects of the target system. The main concepts
of the Metaphysics framework are depicted in figure 1.
A Handle represents an entity inside a given runtime. A

Runtimemodels the environment in which particular entities
pointed to by handles are stored, and is configured to provide
low-level meta information of such handles via the following
fields:

• a Storage, that abstracts the OS API to read and write
from the target process memory,

• an ObjectFormat, that understands and is able to read
and write object headers in the target system,

• a Metaspecies, that knows the shape of classes in the
target system, allowing to read and write slots of ob-
jects in the target system without using their metade-
scription,2

• a Bridge, that is able to locate and deliver handles for
global objects in the target system.

There are two kinds of handles: ObjectHandles for referring
to typical objects in the runtime, and FrameHandles to refer
to stack frames. ObjectHandles contain an oid, which is the
address of an object in the target runtime. FrameHandles
contain a slot which represents a stack frame in its associated
runtime. Handles are usually short lived, used and discarded
while the target runtime is paused. Therefore, we do not

2Metaspecies are needed at initial stages, to provide early access to the
metalevel of objects and for raw access to object slots using mirrors.

need to update them when the GC of the target runtime
moves objects.

3.2 Mirrors
Structural reflection on the objects of the target runtime is
achieved with mirrors. AMirror in our Metaphysics frame-
work is no more than a container for a Handle. Different
subclasses provide an interface that allows us to perform ba-
sic queries on the objects mirrored. An ObjectMirror allows
getting an object’s size and slots, and it can also provide a
mirror on the object’s class.

In Bee, mirrors work as a layer that makes a distinction be-
tween objects of the target system and local ones. By default,
methods that access object internals do not do any copying,
but return new mirrors that contain the direct references
pointed to by the slots of objects. Consider the following
example:

ClassMirror>>#name
| name |
name := self getInstVarNamed: #name.
^name asStringMirror

StringMirror>>#asLocalString
^handle asLocalString

ObjectHandle>>#asLocalString
^runtime stringOf: oid

Runtime>>#stringOf: oid
| size |
size := objectFormat sizeOf: oid.
^storage stringAt: oid sized: size

When a class mirror is sent the message #name, the result
is a mirror to the string stored in the name slot of that class.
To do something meaningful with this mirror, it normally
needs to get a local copy of the string, which is done through
the method #asLocalString.

The mirror model of our framework, in conjunction with
the design presented in section 3.1 is enough to solve the
problem of object discovery in the target system stated in 2.1.

3.3 Subjects, Gates and Execution Semantics
For more complex behavior, a model that allows varying
message execution semantics was created. The experience
we obtained from the scenarios described in sections 2.2
and 2.3 showed that mirrors were only a first approximation
to the dynamic environment we desire to work in. Mirrors
allow us to obtain references to objects of the target system
by reflecting on their internal structure. Afterwards, given
a reference to an object, we want to treat it as if it were a
local object, but giving arbitrary semantics to the messages
sent to it. This requires another mechanism that realizes

3

Meta’17, October 22, 2017, Vancouver, Canada Javier Pimás and Stefan Marr

aSubject aMirage

CompiledMethodhandle to a CM

handle class

gate

Figure 2.When sent a message, aSubject delegates execu-
tion to aMirage, which in turn simulates the execution of
the message. In this case the proxied object is a compiled
method, so the mirage will create an interpreter for the local
CompiledMethod class. The interpreter will perform lookup
on that class and traverse the AST of the method found to
generate a result.

the different possible execution semantics. To tackle these
varying needs we designed the notion of subjects.

A Subject is a proxy to an object in the target system. It
only understands the #doesNotUnderstand: message, which
it overrides to delegate execution to gates. Gates of different
types implement different execution semantics, working as
a strategy pattern.

Subject>>#doesNotUnderstand: aMessage
^gate dispatch: aMessage

The only slot of a subject is its gate, and in turn the gate
points to the object handle. By overriding the #dispatch:
method, gates can realize arbitrary behavior on the subject
when receiving a message. Subjects and gates are separated
to keep the subject interface minimal and that most messages
are intercepted by the #doesNotUnderstand: handler.

During Bee development we identified three kinds of gates,
which we can choose depending on the situation:

Triggers cause execution of the message on the target
process, by modifying the process state, resuming the
process and returning a result. They correspond di-
rectly to the semantics needed to tackle problems de-
scribed in section 2.2

Direct gates cause the local interpretation of the mes-
sage, fetching the source code of methods from the
object in the target system to which the message was
sent.

Mirage gates cause the local interpretation of message,
fetching the source code of methods from a local class
that is equivalent to the one of the object in the target
system.

Direct and Mirage gates correspond to the different kinds
of execution semantics desired in section 2.3. They required
the implementation of a source code interpreter. This in-
terpreter takes as input an AST, a receiver and an array of
arguments. It iterates the nodes of the tree, evaluating them
and finally returning the result of the evaluation.

Figure 2 depicts the collaboration of different objects of
the framework.
Local simulation of message execution for an object of

the target system returns a handle to another object. Nor-
mally, that resulting object is referred by the receiver of the
message and is also stored in the target system. In that case
the runtime of the receiver is assigned to the returned han-
dle. In other situations, simulation can result in handles for
local objects. For example, when a new object needs to be
created during interpretation, it is instantiated locally by the
interpreter, which returns an object handle pointing to the
new object. The runtime assigned to the new handle is one
that represents the local system. In that case, the oid of the
handle is an actual pointer to a local object.
To access an object via different semantics the developer

usually takes a handle to such an object and crates a new sub-
ject with the desired kind of associated gate. Messages with
arguments can be sent to subjects, as long as each argument
is also a subject.

4 Related Work
As previously mentioned, we built on the ideas of mirrors [1].
Similar work includes for instance Mirages [4], which try
to reconcile mirrors with behavioral intercession in Ambi-
entTalk, an actor-based distributed OO language.
The general notion of remote debugging of OO environ-

ments has been studied, too. The low-level IPC mechanism
used by Metaphysics is similar to the one used by Maxine
Inspector [3] and Jikes RDB[2]. Furthermore, Maxine In-
spector uses mirrors to access remote objects. Another ap-
proach is taken in Mercury [5], which implements remote
debugging using reflection via mirrors and other kind of
middleware. While it provides similar functionality to Meta-
physics, its mechanisms differ widely. On one hand, Mercury
introduces a modified language, MetaTalk, where the meta-
level is structurally decomposed (via stateful mirrors), and
the target system has to run a modified VM that is able to
exploit the language features; it provides an adaptable mid-
dleware, Seamless, to communicate both systems, a runtime-
debugging support layer has to be embedded to the target
environment, and reflection support is limited to compo-
nents wrapped by mirrors. On the other hand, Metaphysics
uses the well-known Smalltalk-80 metamodel, and the target
environment is run unmodified, without middleware or any
special debugging support layer. Reflection on the system
is based on the already existing reflective facilities of both
the target and the host system. Metaphysics was thought
for debugging remote processes where the communication
to the remote environment is trusted and fast, like a remote
process on the same machine.
Salkeld and Kiczales [10] propose holographic objects to

deal with snapshots of crashed programs, while Polito et al.

4

Metaphysics: A Robust Remote Framework Meta’17, October 22, 2017, Vancouver, Canada

[9] and Polito [8] propose a virtualization infrastructure for
OO high-level language runtimes.

5 Conclusion
We presented Metaphysics, a framework for accessing ob-
jects with arbitrary message execution semantics. We have
developed this model to improve the workflow of system
programmers in our Bee DMR. This framework is currently
used in our own dynamic native code debugger and profiler.
These tools make use of the metalevel information present
in the target Smalltalk image instead of using debug informa-
tion formats such as DWARF or PDBs, and can be adapted
arbitrarily at run time while we attach to a process, a feature
we already took advantage of and that we expect to keep
using.

Acknowledgments
The authors want to thank Gerardo Richarte, Javier Burroni,
Valeria Murgia, Leandro Caniglia, Jan Vrany and the devel-
opment team of Palantir Solutions for providing valuable
ideas, discussions and reviews, and being in charge of the
development and maintenance of all Bee libraries. This work
was funded by Palantir Solutions. Stefan Marr was funded by
a grant of the Austrian Science Fund (FWF), project number
I2491-N31.

References
[1] Gilad Bracha and David Ungar. 2004. Mirrors: design principles for

meta-level facilities of object-oriented programming languages. In
Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2004, October 24-28, 2004, Vancouver, BC, Canada. 331–344.

[2] Dmitri Makarov and Matthias Hauswirth. 2013. Jikes RDB: a debugger
for the Jikes RVM. In Proceedings of the 2013 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ ’13). ACM, 169–172.

[3] Bernd Mathiske. 2008. The Maxine Virtual Machine and Inspector. In
Companion to the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications (OOPSLA Compan-
ion ’08). ACM, 739–740.

[4] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, and Eric Tanter.
2007. Mirages: Behavioral intercession in a mirror-based architecture.
In Proceedings of the 2007 symposium on Dynamic languages. ACM,
89–100.

[5] Nick Papoulias, Noury Bouraqadi, Luc Fabresse, Stéphane Ducasse,
and Marcus Denker. 2015. Mercury: Properties and design of a remote
debugging solution using reflection. The Journal of Object Technology
14, 2 (2015), 36.

[6] Javier Pimás, Javier Burroni, and Gerardo Richarte. 2014. Design and
implementation of Bee Smalltalk runtime. (2014).

[7] Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr.
2017. Garbage Collection and Efficiency in Dynamic Metacircular
Runtimes. In Proceedings of the 13th ACM SIGPLAN International Sym-
posium on Dynamic Languages (DLS’17). ACM, 12.

[8] Guillermo Polito. 2015. Virtualization Support for Application Run-
time Specialization and Extension. Ph.D. Dissertation. Universit e des
Sciences et Technologies de Lille.

[9] Guillermo Polito, Stéphane Ducasse, Luc Fabresse, and Noury
Bouraqadi. 2013. Virtual smalltalk images: Model and applications. In
21th International Smalltalk Conference-2013. 11–26.

[10] Robin Salkeld and Gregor Kiczales. 2013. Interacting with dead objects.
In ACM SIGPLAN Notices, Vol. 48. ACM, 203–216.

5

	Abstract
	1 Introduction
	2 Dealing with Objects in Different Contexts
	2.1 Remote Object Discovery
	2.2 Remote Code Execution
	2.3 Simulation of Remote Code Execution

	3 The Design of the Metaphysics Framework
	3.1 Base Metaphysics Concepts
	3.2 Mirrors
	3.3 Subjects, Gates and Execution Semantics

	4 Related Work
	5 Conclusion
	References

